Representation of continuum equations in physical components for arbitrary curved surfaces

Sujit Kumar Nath
{"title":"Representation of continuum equations in physical components for arbitrary curved surfaces","authors":"Sujit Kumar Nath","doi":"arxiv-2407.13800","DOIUrl":null,"url":null,"abstract":"Continuum equations are ubiquitous in physical modelling of elastic, viscous,\nand viscoelastic systems. The equations of continuum mechanics take nontrivial\nforms on curved surfaces. Although the curved surface formulation of the\ncontinuum equations are derived in many excellent references available in the\nliterature, they are not readily usable for solving physical problems due to\nthe covariant, contravariant or mixed nature of the stress and strain tensors\nin the equations. We present the continuum equations in terms of physical\ncomponents in a general differentiable manifold. This general formulation of\nthe continuum equations can be used readily for modelling physical problems on\narbitrary curved surfaces. We demonstrate this with the help of some examples.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuum equations are ubiquitous in physical modelling of elastic, viscous, and viscoelastic systems. The equations of continuum mechanics take nontrivial forms on curved surfaces. Although the curved surface formulation of the continuum equations are derived in many excellent references available in the literature, they are not readily usable for solving physical problems due to the covariant, contravariant or mixed nature of the stress and strain tensors in the equations. We present the continuum equations in terms of physical components in a general differentiable manifold. This general formulation of the continuum equations can be used readily for modelling physical problems on arbitrary curved surfaces. We demonstrate this with the help of some examples.
任意曲面的连续方程物理成分表示法
连续方程在弹性、粘性和粘弹性系统的物理建模中无处不在。连续介质力学方程在曲面上呈现非三维形式。尽管许多优秀的参考文献都推导出了连续方程的曲面形式,但由于方程中应力和应变张量的协变、反变或混合性质,它们并不能随时用于解决物理问题。我们用一般可变流形中的物理成分来表示连续方程。这种连续方程的一般表述方式可用于任意曲面上物理问题的建模。我们将通过一些实例来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信