Sally El Hajjar, Fahed Abdallah, Hichem Omrani, Alain Khaled Chaaban, Muhammad Arif, Ryan Alturki, Mohammed J. AlGhamdi
{"title":"One-step graph-based multi-view clustering via specific and unified nonnegative embeddings","authors":"Sally El Hajjar, Fahed Abdallah, Hichem Omrani, Alain Khaled Chaaban, Muhammad Arif, Ryan Alturki, Mohammed J. AlGhamdi","doi":"10.1007/s13042-024-02280-7","DOIUrl":null,"url":null,"abstract":"<p>Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"21 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02280-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-view clustering techniques, especially spectral clustering methods, are quite popular today in the fields of machine learning and data science owing to the ever-growing diversity in data types and information sources. As the landscape of data continues to evolve, the need for advanced clustering approaches becomes increasingly crucial. In this context, the research in this study addresses the challenges posed by traditional multi-view spectral clustering techniques, offering a novel approach that simultaneously learns nonnegative embedding matrices and spectral embeddings. Moreover, the cluster label matrix, also known as the nonnegative embedding matrix, is split into two different types of matrices: (1) the shared nonnegative embedding matrix, which reflects the common cluster structure, (2) the individual nonnegative embedding matrices, which represent the unique cluster structure of each view. The proposed strategy allows us to effectively deal with noise and outliers in multiple views. The simultaneous optimization of the proposed model is solved efficiently with an alternating minimization scheme. The proposed method exhibits significant improvements, with an average accuracy enhancement of 4% over existing models, as demonstrated through extensive experiments on various real datasets. This highlights the efficacy of the approach in achieving superior clustering results.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems