Controllability of Distributed Parameter Systems

Pub Date : 2024-07-18 DOI:10.1134/s0965542524700453
V. K. Tolstykh
{"title":"Controllability of Distributed Parameter Systems","authors":"V. K. Tolstykh","doi":"10.1134/s0965542524700453","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The problem of controllability for problems of optimal control and optimization of distributed parameter systems governed by partial differential equations is considered. The concept of controllability understood as Tikhonov correctness for solving optimization problems is introduced. A theorem formulating controllability conditions for directly solving optimization problems (direct minimization of the objective functional) is presented. A test example of the numerical solution of the optimization problem for a nonlinear hyperbolic system describing the unsteady flow of water in an open channel is considered. The analysis of controllability is demonstrated that ensures the correctness of the problem solution and high accuracy of optimization of the distributed friction coefficient in the flow equations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of controllability for problems of optimal control and optimization of distributed parameter systems governed by partial differential equations is considered. The concept of controllability understood as Tikhonov correctness for solving optimization problems is introduced. A theorem formulating controllability conditions for directly solving optimization problems (direct minimization of the objective functional) is presented. A test example of the numerical solution of the optimization problem for a nonlinear hyperbolic system describing the unsteady flow of water in an open channel is considered. The analysis of controllability is demonstrated that ensures the correctness of the problem solution and high accuracy of optimization of the distributed friction coefficient in the flow equations.

Abstract Image

分享
查看原文
分布式参数系统的可控性
摘要 研究了由偏微分方程控制的分布参数系统的最优控制和优化问题的可控性问题。引入了可控性的概念,将其理解为求解优化问题的 Tikhonov 正确性。提出了直接求解优化问题(目标函数直接最小化)的可控性条件定理。考虑了一个优化问题数值求解的测试实例,该优化问题是一个描述明渠中水流非稳态的非线性双曲系统。可控性分析确保了问题求解的正确性和流动方程中分布式摩擦系数的高精度优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信