On Asymptotics of Eigenvalues of Seven-Diagonal Toeplitz Matrices

Pub Date : 2024-07-18 DOI:10.1134/s0965542524700404
I. V. Voronin
{"title":"On Asymptotics of Eigenvalues of Seven-Diagonal Toeplitz Matrices","authors":"I. V. Voronin","doi":"10.1134/s0965542524700404","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Asymptotic formulas are derived that admit a uniform estimate of the remainder for Toeplitz matrices of size <span>\\(n\\)</span> as <span>\\(n \\to \\infty \\)</span> in the case when their symbol <span>\\(a(t)\\)</span> has the form <span>\\(a(t) = (t - 2{{a}_{0}} + {{t}^{{ - 1}}}{{)}^{3}}\\)</span>. This result is a generalization of the result of Stukopin et al. (2021), who obtained similar asymptotic formulas for a seven-diagonal Toeplitz matrix with a similar symbol in the case <span>\\({{a}_{0}} = 1\\)</span>. The resulting formulas are of high computational efficiency and generalize the classical results of Parter and Widom on asymptotics of extreme eigenvalues.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Asymptotic formulas are derived that admit a uniform estimate of the remainder for Toeplitz matrices of size \(n\) as \(n \to \infty \) in the case when their symbol \(a(t)\) has the form \(a(t) = (t - 2{{a}_{0}} + {{t}^{{ - 1}}}{{)}^{3}}\). This result is a generalization of the result of Stukopin et al. (2021), who obtained similar asymptotic formulas for a seven-diagonal Toeplitz matrix with a similar symbol in the case \({{a}_{0}} = 1\). The resulting formulas are of high computational efficiency and generalize the classical results of Parter and Widom on asymptotics of extreme eigenvalues.

Abstract Image

分享
查看原文
论七条对角线托普利兹矩阵特征值的渐近性
摘要 本文导出了一个渐近公式,当符号\(a(t)\)的形式为\(a(t) = (t - 2{{a}_{0}} + {{t}^{{ - 1}}}{)}^{3}}\) 时,可以对大小为 \(n\) 的托普利兹矩阵的余数进行统一估计。这一结果是对 Stukopin 等人(2021 年)结果的推广,他们在 \({{a}_{0}} = 1\) 的情况下,为具有类似符号的七对角托普利兹矩阵获得了类似的渐近公式。所得到的公式具有很高的计算效率,并推广了帕特和维多姆关于极值特征值渐近的经典结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信