The conjecture of Birch and Swinnerton-Dyer for certain elliptic curves with complex multiplication

IF 1.8 2区 数学 Q1 MATHEMATICS
Ashay Burungale, Matthias Flach
{"title":"The conjecture of Birch and Swinnerton-Dyer for certain elliptic curves with complex multiplication","authors":"Ashay Burungale, Matthias Flach","doi":"10.4310/cjm.2024.v12.n2.a2","DOIUrl":null,"url":null,"abstract":"Let $E/F$ be an elliptic curve over a number field $F$ with complex multiplication by the ring of integers in an imaginary quadratic field $K$. We give a complete proof of the conjecture of Birch and Swinnerton-Dyer for $E/F$, as well as its equivariant refinement formulated by Gross $\\href{https://doi.org/10.1007/978-1-4899-6699-5_14}{[39]}$, under the assumption that $L(E/F, 1) \\neq 0$ and that $F(E_{tors})/K$ is abelian. We also prove analogous results for CM abelian varieties $A/K$.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"29 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2024.v12.n2.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $E/F$ be an elliptic curve over a number field $F$ with complex multiplication by the ring of integers in an imaginary quadratic field $K$. We give a complete proof of the conjecture of Birch and Swinnerton-Dyer for $E/F$, as well as its equivariant refinement formulated by Gross $\href{https://doi.org/10.1007/978-1-4899-6699-5_14}{[39]}$, under the assumption that $L(E/F, 1) \neq 0$ and that $F(E_{tors})/K$ is abelian. We also prove analogous results for CM abelian varieties $A/K$.
Birch 和 Swinnerton-Dyer 对某些具有复乘法的椭圆曲线的猜想
设 $E/F$ 是一条数域 $F$ 上的椭圆曲线,其复数乘以虚二次域 $K$ 中的整数环。在 $L(E/F, 1) \neq 0$ 和 $F(E_{tors})/K$ 是无等边的假设下,我们给出了伯奇和斯温纳顿-戴尔对 $E/F$ 的猜想及其由格罗斯 $\href{https://doi.org/10.1007/978-1-4899-6699-5_14}{[39]}$ 提出的等变细化的完整证明。我们还证明了 CM 无性变项 $A/K$ 的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信