$Z$-critical connections and Bridgeland stability conditions

IF 1.8 2区 数学 Q1 MATHEMATICS
Ruadhaí Dervan, John Benjamin McCarthy, Lars Martin Sektnan
{"title":"$Z$-critical connections and Bridgeland stability conditions","authors":"Ruadhaí Dervan, John Benjamin McCarthy, Lars Martin Sektnan","doi":"10.4310/cjm.2024.v12.n2.a1","DOIUrl":null,"url":null,"abstract":"We associate geometric partial differential equations on holomorphic vector bundles to Bridgeland stability conditions. We call solutions to these equations $Z$-critical connections, with $Z$ a central charge. Deformed Hermitian Yang–Mills connections are a special case. We explain how our equations arise naturally through infinite dimensional moment maps. Our main result shows that in the large volume limit, a sufficiently smooth holomorphic vector bundle admits a $Z$-critical connection if and only if it is asymptotically $Z$-stable. Even for the deformed Hermitian Yang–Mills equation, this provides the first examples of solutions in higher rank.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2024.v12.n2.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We associate geometric partial differential equations on holomorphic vector bundles to Bridgeland stability conditions. We call solutions to these equations $Z$-critical connections, with $Z$ a central charge. Deformed Hermitian Yang–Mills connections are a special case. We explain how our equations arise naturally through infinite dimensional moment maps. Our main result shows that in the large volume limit, a sufficiently smooth holomorphic vector bundle admits a $Z$-critical connection if and only if it is asymptotically $Z$-stable. Even for the deformed Hermitian Yang–Mills equation, this provides the first examples of solutions in higher rank.
Z$临界连接和布里奇兰稳定性条件
我们将全形向量束上的几何偏微分方程与布里奇兰稳定性条件联系起来。我们称这些方程的解为$Z$临界连接,其中$Z$为中心电荷。变形赫尔密特杨-米尔斯连接是一个特例。我们解释了我们的方程是如何通过无限维矩图自然产生的。我们的主要结果表明,在大体积极限中,当且仅当一个足够光滑的全形向量束是渐近于$Z$稳定的时候,它才会有一个$Z$临界连接。即使对于变形赫米特杨-米尔斯方程,这也提供了高阶解的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信