Eigenstructure Perturbations for a Class of Hamiltonian Matrices and Solutions of Related Riccati Inequalities

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Volker Mehrmann, Hongguo Xu
{"title":"Eigenstructure Perturbations for a Class of Hamiltonian Matrices and Solutions of Related Riccati Inequalities","authors":"Volker Mehrmann, Hongguo Xu","doi":"10.1137/23m1619563","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1335-1360, September 2024. <br/> Abstract. The characterization of the solution set for a class of algebraic Riccati inequalities is studied. This class arises in the passivity analysis of linear time-invariant control systems. Eigenvalue perturbation theory for the Hamiltonian matrix associated with the Riccati inequality is used to analyze the extremal points of the solution set.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1619563","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1335-1360, September 2024.
Abstract. The characterization of the solution set for a class of algebraic Riccati inequalities is studied. This class arises in the passivity analysis of linear time-invariant control systems. Eigenvalue perturbation theory for the Hamiltonian matrix associated with the Riccati inequality is used to analyze the extremal points of the solution set.
一类哈密尔顿矩阵的特征结构扰动及相关里卡提不等式的解
SIAM 矩阵分析与应用期刊》,第 45 卷,第 3 期,第 1335-1360 页,2024 年 9 月。 摘要研究了一类代数 Riccati 不等式解集的特征。这类不等式出现在线性时不变控制系统的钝化分析中。利用与 Riccati 不等式相关的哈密顿矩阵的特征值扰动理论来分析解集的极值点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信