Mixture of Experts with Mixture of Precisions for Tuning Quality of Service

HamidReza Imani, Abdolah Amirany, Tarek El-Ghazawi
{"title":"Mixture of Experts with Mixture of Precisions for Tuning Quality of Service","authors":"HamidReza Imani, Abdolah Amirany, Tarek El-Ghazawi","doi":"arxiv-2407.14417","DOIUrl":null,"url":null,"abstract":"The increasing demand for deploying large Mixture-of-Experts (MoE) models in\nresource-constrained environments necessitates efficient approaches to address\ntheir high memory and computational requirements challenges. Moreover, given\nthat tasks come in different user-defined constraints and the available\nresources change over time in multi-tenant environments, it is necessary to\ndesign an approach which provides a flexible configuration space. This paper\npresents an adaptive serving approach for the efficient deployment of MoE\nmodels, capitalizing on partial quantization of the experts. By dynamically\ndetermining the number of quantized experts and their distribution across CPU\nand GPU, our approach explores the Pareto frontier and offers a fine-grained\nrange of configurations for tuning throughput and model quality. Our evaluation\non an NVIDIA A100 GPU using a Mixtral 8x7B MoE model for three language\nmodelling benchmarks demonstrates that the throughput of token generation can\nbe adjusted from 0.63 to 13.00 token per second. This enhancement comes with a\nmarginal perplexity increase of 2.62 to 2.80, 6.48 to 7.24, and 3.24 to 3.53\nfor WikiText2, PTB, and C4 datasets respectively under maximum quantization.\nThese results highlight the practical applicability of our approach in dynamic\nand accuracy-sensitive applications where both memory usage and output quality\nare important.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for deploying large Mixture-of-Experts (MoE) models in resource-constrained environments necessitates efficient approaches to address their high memory and computational requirements challenges. Moreover, given that tasks come in different user-defined constraints and the available resources change over time in multi-tenant environments, it is necessary to design an approach which provides a flexible configuration space. This paper presents an adaptive serving approach for the efficient deployment of MoE models, capitalizing on partial quantization of the experts. By dynamically determining the number of quantized experts and their distribution across CPU and GPU, our approach explores the Pareto frontier and offers a fine-grained range of configurations for tuning throughput and model quality. Our evaluation on an NVIDIA A100 GPU using a Mixtral 8x7B MoE model for three language modelling benchmarks demonstrates that the throughput of token generation can be adjusted from 0.63 to 13.00 token per second. This enhancement comes with a marginal perplexity increase of 2.62 to 2.80, 6.48 to 7.24, and 3.24 to 3.53 for WikiText2, PTB, and C4 datasets respectively under maximum quantization. These results highlight the practical applicability of our approach in dynamic and accuracy-sensitive applications where both memory usage and output quality are important.
专家与精确度混合物用于调整服务质量
在资源受限的环境中部署大型专家混合物(MoE)模型的需求日益增长,这就需要采用高效的方法来解决其内存和计算要求高的难题。此外,考虑到在多租户环境中,任务具有不同的用户定义限制,而且可用资源会随时间发生变化,因此有必要设计一种能提供灵活配置空间的方法。本文介绍了一种自适应服务方法,利用专家的部分量化,高效部署 MoE 模型。通过动态确定量化专家的数量及其在 CPU 和 GPU 上的分布,我们的方法探索了帕累托前沿,并为调整吞吐量和模型质量提供了细粒度的配置范围。我们在英伟达 A100 GPU 上使用 Mixtral 8x7B MoE 模型对三个语言建模基准进行的评估表明,令牌生成的吞吐量可从每秒 0.63 个令牌调整到 13.00 个令牌。在最大量化条件下,WikiText2、PTB 和 C4 数据集的误解度分别从 2.62 提高到 2.80、6.48 提高到 7.24 和 3.24 提高到 3.53。这些结果突显了我们的方法在内存使用和输出质量都很重要的动态和准确度敏感型应用中的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信