Lipschitz geometry of complex surface germs via inner rates of primary ideals

Yenni Cherik
{"title":"Lipschitz geometry of complex surface germs via inner rates of primary ideals","authors":"Yenni Cherik","doi":"arxiv-2407.14265","DOIUrl":null,"url":null,"abstract":"Let $(X, 0)$ be a normal complex surface germ embedded in $(\\mathbb{C}^n,\n0)$, and denote by $\\mathfrak{m}$ the maximal ideal of the local ring\n$\\mathcal{O}_{X,0}$. In this paper, we associate to each $\\mathfrak{m}$-primary\nideal $I$ of $\\mathcal{O}_{X,0}$ a continuous function $\\mathcal{I}_I$ defined\non the set of positive (suitably normalized) semivaluations of\n$\\mathcal{O}_{X,0}$. We prove that the function $\\mathcal{I}_{\\mathfrak{m}}$ is\ndetermined by the outer Lipschitz geometry of the surface $(X, 0)$. We further\ndemonstrate that for each $\\mathfrak{m}$-primary ideal $I$, there exists a\ncomplex surface germ $(X_I, 0)$ with an isolated singularity whose\nnormalization is isomorphic to $(X, 0)$ and $\\mathcal{I}_I =\n\\mathcal{I}_{\\mathfrak{m}_I}$, where $\\mathfrak{m}_I$ is the maximal ideal of\n$\\mathcal{O}_{X_I,0}$. Subsequently, we construct an infinite family of complex\nsurface germs with isolated singularities, whose normalizations are isomorphic\nto $(X,0)$ (in particular, they are homeomorphic to $(X,0)$) but have distinct\nouter Lipschitz types.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(X, 0)$ be a normal complex surface germ embedded in $(\mathbb{C}^n, 0)$, and denote by $\mathfrak{m}$ the maximal ideal of the local ring $\mathcal{O}_{X,0}$. In this paper, we associate to each $\mathfrak{m}$-primary ideal $I$ of $\mathcal{O}_{X,0}$ a continuous function $\mathcal{I}_I$ defined on the set of positive (suitably normalized) semivaluations of $\mathcal{O}_{X,0}$. We prove that the function $\mathcal{I}_{\mathfrak{m}}$ is determined by the outer Lipschitz geometry of the surface $(X, 0)$. We further demonstrate that for each $\mathfrak{m}$-primary ideal $I$, there exists a complex surface germ $(X_I, 0)$ with an isolated singularity whose normalization is isomorphic to $(X, 0)$ and $\mathcal{I}_I = \mathcal{I}_{\mathfrak{m}_I}$, where $\mathfrak{m}_I$ is the maximal ideal of $\mathcal{O}_{X_I,0}$. Subsequently, we construct an infinite family of complex surface germs with isolated singularities, whose normalizations are isomorphic to $(X,0)$ (in particular, they are homeomorphic to $(X,0)$) but have distinct outer Lipschitz types.
通过主理想的内率实现复曲面胚芽的 Lipschitz 几何学
让 $(X, 0)$ 是嵌入 $(\mathbb{C}^n,0)$ 的法复曲面胚,并用 $\mathfrak{m}$ 表示局部环 $\mathcal{O}_{X,0}$ 的最大理想。在本文中,我们给 $\mathcal{O}_{X,0}$ 的每个 $\mathfrak{m}$ 主理想 $I$ 关联了一个连续函数 $\mathcal{I}_I$ ,这个函数定义在 $\mathcal{O}_{X,0}$ 的正(适当归一化的)半理想集合上。我们证明函数 $\mathcal{I}_{mathfrak{m}}$ 是由曲面 $(X, 0)$ 的外李普希兹几何决定的。我们进一步证明,对于每个$\mathfrak{m}$-主理想$I$,都存在一个具有孤立奇点的复曲面胚$(X_I, 0)$,该孤立奇点的正则化与$(X、0)$ 并且 $\mathcal{I}_I =\mathcal{I}_{mathfrak{m}_I}$ 其中 $\mathfrak{m}_I$ 是 $\mathcal{O}_{X_I,0}$ 的最大理想。随后,我们构造了一个具有孤立奇点的复曲面胚无限族,它们的归一化与$(X,0)$同构(特别是,它们与$(X,0)$同构),但具有不同的外李普希兹类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信