{"title":"A treecode algorithm for the Poisson equation in a general domain with unstructured grids","authors":"Zixuan Cui, Lei Yang, Jing Wu, Guanghui Hu","doi":"10.1007/s11075-024-01888-8","DOIUrl":null,"url":null,"abstract":"<p>Since the seminal work in 1986, the treecode algorithm has been widely used in a variety of science and engineering problems, such as the electrostatic and magnetostatic fields calculations. With the continuous advancements of science exploration and engineering applications, efficient numerical simulations for problems defined on complex domains have become increasingly necessary. In this paper, based on a hierarchy geometry tree, an efficient implementation of the treecode algorithm is described in detail for the numerical solution of a Poisson equation defined on a general domain. The features of our algorithm include: i) with the hierarchy geometry tree, the neighbor and non-neighbor patches for a given element can be generated efficiently, ii) no restriction on the geometry of the domain, which means that our algorithm can be applied for general problem, iii) the desired computational complexity <span>\\({\\varvec{\\mathcal {O}}}(\\varvec{N}\\,\\varvec{\\log }\\,{\\varvec{N}})\\)</span> can be observed well, where <span>\\(\\varvec{N}\\)</span> denotes the number of degrees of freedom in the domain, and iv) very friendly to the parallel computing, i.e., an ideal speedup can be observed successfully from numerical results with OpenMP technique. It is believed that our solution potentially is a quality candidate for implementing the treecode algorithm for problems defined on general domains with unstructured grids.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01888-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the seminal work in 1986, the treecode algorithm has been widely used in a variety of science and engineering problems, such as the electrostatic and magnetostatic fields calculations. With the continuous advancements of science exploration and engineering applications, efficient numerical simulations for problems defined on complex domains have become increasingly necessary. In this paper, based on a hierarchy geometry tree, an efficient implementation of the treecode algorithm is described in detail for the numerical solution of a Poisson equation defined on a general domain. The features of our algorithm include: i) with the hierarchy geometry tree, the neighbor and non-neighbor patches for a given element can be generated efficiently, ii) no restriction on the geometry of the domain, which means that our algorithm can be applied for general problem, iii) the desired computational complexity \({\varvec{\mathcal {O}}}(\varvec{N}\,\varvec{\log }\,{\varvec{N}})\) can be observed well, where \(\varvec{N}\) denotes the number of degrees of freedom in the domain, and iv) very friendly to the parallel computing, i.e., an ideal speedup can be observed successfully from numerical results with OpenMP technique. It is believed that our solution potentially is a quality candidate for implementing the treecode algorithm for problems defined on general domains with unstructured grids.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.