Anderson A. Tomaz, Rafael S. Mattos and Mario Barbatti
{"title":"Gravitationally-induced wave function collapse time for molecules","authors":"Anderson A. Tomaz, Rafael S. Mattos and Mario Barbatti","doi":"10.1039/D4CP02364A","DOIUrl":null,"url":null,"abstract":"<p >The Diósi–Penrose model states that the wave function collapse ending a quantum superposition occurs due to the instability of coexisting gravitational potentials created by distinct geometric conformations of the system in different states. The Heisenberg time-energy principle can be invoked to estimate the collapse time for the energy associated with this instability, the gravitational self-energy. This paper develops atomistic models to calculate the Diósi–Penrose collapse time. It applies them to a range of systems, from small molecules to large biological structures and macroscopic systems. An experiment is suggested to test the Diósi–Penrose hypothesis, and we critically examine the model, highlighting challenges from an atomistic perspective, such as gravitational self-energy saturation and limited extensivity.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 31","pages":" 20785-20798"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cp/d4cp02364a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02364a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Diósi–Penrose model states that the wave function collapse ending a quantum superposition occurs due to the instability of coexisting gravitational potentials created by distinct geometric conformations of the system in different states. The Heisenberg time-energy principle can be invoked to estimate the collapse time for the energy associated with this instability, the gravitational self-energy. This paper develops atomistic models to calculate the Diósi–Penrose collapse time. It applies them to a range of systems, from small molecules to large biological structures and macroscopic systems. An experiment is suggested to test the Diósi–Penrose hypothesis, and we critically examine the model, highlighting challenges from an atomistic perspective, such as gravitational self-energy saturation and limited extensivity.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.