Using multiple-point geostatistics for geomodeling of a vein-type gold deposit

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Aida Zhexenbayeva , Nasser Madani , Philippe Renard , Julien Straubhaar
{"title":"Using multiple-point geostatistics for geomodeling of a vein-type gold deposit","authors":"Aida Zhexenbayeva ,&nbsp;Nasser Madani ,&nbsp;Philippe Renard ,&nbsp;Julien Straubhaar","doi":"10.1016/j.acags.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100177"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000247/pdfft?md5=6267aeb1f34a82ff3e55ae08fe0d7c7d&pid=1-s2.0-S2590197424000247-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Geostatistical cascade modeling of Mineral Resources is challenging in vein-type gold deposits. The narrow shape and long-range features of these auriferous veins, coupled with the paucity of drill-hole data, can complicate the modeling process and make the use of two-point geostatistical algorithms impractical. Instead, multiple-point geostatistics techniques can be a suitable alternative. However, the most challenging part in implementing the MPS is to use a suitable training data set or training image (TI). In this paper, we suggest using the radial basis function algorithm to build a training image and the DeeSse algorithm, one of the multiple-point statistics (MPS) methods, to model two long-range veins in a gold deposit. It is demonstrated that DeeSse can replicate long-range vein features better than plurigaussian simulation techniques when there is a lack of conditioning data. This is shown by several validation processes, such as comparing simulation results with an interpretive geological block model and replicating geological proportions.

利用多点地质统计学对矿脉型金矿床进行地质建模
矿产资源的地质统计级联建模在脉型金矿床中具有挑战性。这些含金矿脉形状狭窄,范围较远,加上钻孔数据较少,会使建模过程复杂化,导致使用两点地质统计算法不切实际。相反,多点地质统计技术是一种合适的替代方法。然而,实施多点地质统计技术最具挑战性的部分是使用合适的训练数据集或训练图像(TI)。在本文中,我们建议使用径向基函数算法建立训练图像,并使用多点统计(MPS)方法之一的 DeeSse 算法对金矿床中的两条长距离矿脉进行建模。结果表明,在缺乏条件数据的情况下,DeeSse 能比复数高斯模拟技术更好地复制长距离矿脉特征。几个验证过程(如将模拟结果与解释性地质块模型进行比较以及复制地质比例)都证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信