Rabab Ali Abumalloh , Mehrbakhsh Nilashi , Keng Boon Ooi , Garry Wei Han Tan , Hing Kai Chan
{"title":"Impact of generative artificial intelligence models on the performance of citizen data scientists in retail firms","authors":"Rabab Ali Abumalloh , Mehrbakhsh Nilashi , Keng Boon Ooi , Garry Wei Han Tan , Hing Kai Chan","doi":"10.1016/j.compind.2024.104128","DOIUrl":null,"url":null,"abstract":"<div><p>Generative Artificial Intelligence (AI) models serve as powerful tools for organizations aiming to integrate advanced data analysis and automation into their applications and services. Citizen data scientists—individuals without formal training but skilled in data analysis—combine domain expertise with analytical skills, making them invaluable assets in the retail sector. Generative AI models can further enhance their performance, offering a cost-effective alternative to hiring professional data scientists. However, it is unclear how AI models can effectively contribute to this development and what challenges may arise. This study explores the impact of generative AI models on citizen data scientists in retail firms. We investigate the strengths, weaknesses, opportunities, and threats of these models. Survey data from 268 retail companies is used to develop and validate a new model. Findings highlight that misinformation, lack of explainability, biased content generation, and data security and privacy concerns in generative AI models are major factors affecting citizen data scientists’ performance. Practical implications suggest that generative AI can empower retail firms by enabling advanced data science techniques and real-time decision-making. However, firms must address drawbacks and threats in generative AI models through robust policies and collaboration between domain experts and AI developers.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"161 ","pages":"Article 104128"},"PeriodicalIF":8.2000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000563","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Generative Artificial Intelligence (AI) models serve as powerful tools for organizations aiming to integrate advanced data analysis and automation into their applications and services. Citizen data scientists—individuals without formal training but skilled in data analysis—combine domain expertise with analytical skills, making them invaluable assets in the retail sector. Generative AI models can further enhance their performance, offering a cost-effective alternative to hiring professional data scientists. However, it is unclear how AI models can effectively contribute to this development and what challenges may arise. This study explores the impact of generative AI models on citizen data scientists in retail firms. We investigate the strengths, weaknesses, opportunities, and threats of these models. Survey data from 268 retail companies is used to develop and validate a new model. Findings highlight that misinformation, lack of explainability, biased content generation, and data security and privacy concerns in generative AI models are major factors affecting citizen data scientists’ performance. Practical implications suggest that generative AI can empower retail firms by enabling advanced data science techniques and real-time decision-making. However, firms must address drawbacks and threats in generative AI models through robust policies and collaboration between domain experts and AI developers.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.