Dedy Hermansyah, Desiree Anggia Paramita, Adi Muradi Muhar, Nur Dina Amalina
{"title":"<i>Curcuma longa</i> extract inhibits migration by reducing MMP-9 and Rac-1 expression in highly metastatic breast cancer cells.","authors":"Dedy Hermansyah, Desiree Anggia Paramita, Adi Muradi Muhar, Nur Dina Amalina","doi":"10.4103/RPS.RPS_46_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Highly metastatic breast cancer is a population of cancer cells that has metastasized to other organs in the body leading to apoptosis resistance. It was reported that MDAMB-231 cells contain lower levels of reactive oxygen species associated with metastatic capability. <i>Curcuma longa</i> (CL) possesses cytotoxic effects in several cancer cells including metastatic breast cancer cells. This study aimed to investigate the effect of CL-inhibited cell migration in highly metastatic breast cancer MDAMB-231 cells.</p><p><strong>Experimental approach: </strong>CL was extracted under maceration with methanol. The cytotoxic effect on single and combination treatment of CL was assessed through the MTT assay. Migration analysis was evaluated using scratch wound healing assay, MMP-9 expression by gelatine zymography, Rac-1, and MMP-9 gene expression using Real-Time Quantitative Reverse transcription polymerase chain reaction (qRT-PCR). The apoptosis induction was analyzed through Bax gene expression and Bcl-2 protein expression.</p><p><strong>Findings/results: </strong>We found that CL inhibits the growth of MDAMB-231 cells, induces Bax gene expression, and suppresses Bcl-2 expression in a dose-dependent manner. Moreover, cancer cell migration was suppressed by the presence of CL. qRT-PCR and gelatine zymography assay showed that CL downregulates Rac-1 and MMP-9 gene expression.</p><p><strong>Conclusion and implications: </strong>CL could inhibit the growth and migration of highly metastatic breast cancer cells by reducing the Rac-1 gene expression and regulating apoptosis protein expression.</p>","PeriodicalId":21075,"journal":{"name":"Research in Pharmaceutical Sciences","volume":"19 2","pages":"157-166"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/RPS.RPS_46_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Highly metastatic breast cancer is a population of cancer cells that has metastasized to other organs in the body leading to apoptosis resistance. It was reported that MDAMB-231 cells contain lower levels of reactive oxygen species associated with metastatic capability. Curcuma longa (CL) possesses cytotoxic effects in several cancer cells including metastatic breast cancer cells. This study aimed to investigate the effect of CL-inhibited cell migration in highly metastatic breast cancer MDAMB-231 cells.
Experimental approach: CL was extracted under maceration with methanol. The cytotoxic effect on single and combination treatment of CL was assessed through the MTT assay. Migration analysis was evaluated using scratch wound healing assay, MMP-9 expression by gelatine zymography, Rac-1, and MMP-9 gene expression using Real-Time Quantitative Reverse transcription polymerase chain reaction (qRT-PCR). The apoptosis induction was analyzed through Bax gene expression and Bcl-2 protein expression.
Findings/results: We found that CL inhibits the growth of MDAMB-231 cells, induces Bax gene expression, and suppresses Bcl-2 expression in a dose-dependent manner. Moreover, cancer cell migration was suppressed by the presence of CL. qRT-PCR and gelatine zymography assay showed that CL downregulates Rac-1 and MMP-9 gene expression.
Conclusion and implications: CL could inhibit the growth and migration of highly metastatic breast cancer cells by reducing the Rac-1 gene expression and regulating apoptosis protein expression.
期刊介绍:
Research in Pharmaceutical Sciences (RPS) is included in Thomson Reuters ESCI Web of Science (searchable at WoS master journal list), indexed with PubMed and PubMed Central and abstracted in the Elsevier Bibliographic Databases. Databases include Scopus, EMBASE, EMCare, EMBiology and Elsevier BIOBASE. It is also indexed in several specialized databases including Scientific Information Database (SID), Google Scholar, Iran Medex, Magiran, Index Copernicus (IC) and Islamic World Science Citation Center (ISC).