NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yupeng Ma, Yongzhen Pei
{"title":"NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data.","authors":"Yupeng Ma, Yongzhen Pei","doi":"10.1142/S021972002450015X","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of single-cell RNA sequencing (scRNA-seq) technology has generated vast amounts of data. However, these data often exhibit batch effects due to various factors such as different time points, experimental personnel, and instruments used, which can obscure the biological differences in the data itself. Based on the characteristics of scRNA-seq data, we designed a dense deep residual network model, referred to as NDnetwork. Subsequently, we combined the NDnetwork model with the MNN method to correct batch effects in scRNA-seq data, and named it the NDMNN method. Comprehensive experimental results demonstrate that the NDMNN method outperforms existing commonly used methods for correcting batch effects in scRNA-seq data. As the scale of single-cell sequencing continues to expand, we believe that NDMNN will be a valuable tool for researchers in the biological community for correcting batch effects in their studies. The source code and experimental results of the NDMNN method can be found at https://github.com/mustang-hub/NDMNN.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2450015"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002450015X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of single-cell RNA sequencing (scRNA-seq) technology has generated vast amounts of data. However, these data often exhibit batch effects due to various factors such as different time points, experimental personnel, and instruments used, which can obscure the biological differences in the data itself. Based on the characteristics of scRNA-seq data, we designed a dense deep residual network model, referred to as NDnetwork. Subsequently, we combined the NDnetwork model with the MNN method to correct batch effects in scRNA-seq data, and named it the NDMNN method. Comprehensive experimental results demonstrate that the NDMNN method outperforms existing commonly used methods for correcting batch effects in scRNA-seq data. As the scale of single-cell sequencing continues to expand, we believe that NDMNN will be a valuable tool for researchers in the biological community for correcting batch effects in their studies. The source code and experimental results of the NDMNN method can be found at https://github.com/mustang-hub/NDMNN.

NDMNN:基于深度残差网络的新型 MNN 方法,用于消除 scRNA-seq 数据中的批次效应。
单细胞 RNA 测序(scRNA-seq)技术的快速发展产生了大量数据。然而,由于时间点、实验人员和使用仪器的不同等各种因素,这些数据往往表现出批次效应,从而掩盖了数据本身的生物学差异。根据 scRNA-seq 数据的特点,我们设计了一个密集的深度残差网络模型,简称为 NDnetwork。随后,我们将 NDnetwork 模型与 MNN 方法相结合,校正了 scRNA-seq 数据中的批次效应,并将其命名为 NDMNN 方法。综合实验结果表明,NDMNN方法在校正scRNA-seq数据的批次效应方面优于现有的常用方法。随着单细胞测序规模的不断扩大,我们相信 NDMNN 将成为生物界研究人员在研究中校正批次效应的重要工具。有关 NDMNN 方法的源代码和实验结果,请访问 https://github.com/mustang-hub/NDMNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信