Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis.
IF 0.9 4区 生物学Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
{"title":"Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis.","authors":"Xia Li, Xuetong Zhao, Xinjian Yu, Jianping Zhao, Xiangdong Fang","doi":"10.1142/S0219720024500161","DOIUrl":null,"url":null,"abstract":"<p><p>The Qingfei Paidu decoction (QFPDD) is a widely acclaimed therapeutic formula employed nationwide for the clinical management of coronavirus disease 2019 (COVID-19). QFPDD exerts a synergistic therapeutic effect, characterized by its multi-component, multi-target, and multi-pathway action. However, the intricate interactions among the ingredients and targets within QFPDD and their systematic effects in multiple tissues remain undetermined. To address this, we qualitatively characterized the chemical components of QFPDD. We integrated multi-tissue transcriptomic analysis with GraphDTA, a deep learning model, to screen for potential compound-target interactions of QFPDD in multiple tissues. We predicted 13 key active compounds, 127 potential targets and 27 pathways associated with QFPDD across six different tissues. Notably, oleanolic acid-AXL exhibited leading affinity in the heart, blood, and liver. Molecular docking and molecular dynamics simulation confirmed their strong binding affinity. The robust interaction between oleanolic acid and the AXL receptor suggests that AXL is a promising target for developing clinical intervention strategies. Through the construction of a multi-tissue compound-target interaction network, our study further elucidated the mechanisms through which QFPDD effectively combats COVID-19 in multiple tissues. Our work also establishes a framework for future investigations into the systemic effects of other Traditional Chinese Medicine (TCM) formulas in disease treatment.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2450016"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720024500161","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Qingfei Paidu decoction (QFPDD) is a widely acclaimed therapeutic formula employed nationwide for the clinical management of coronavirus disease 2019 (COVID-19). QFPDD exerts a synergistic therapeutic effect, characterized by its multi-component, multi-target, and multi-pathway action. However, the intricate interactions among the ingredients and targets within QFPDD and their systematic effects in multiple tissues remain undetermined. To address this, we qualitatively characterized the chemical components of QFPDD. We integrated multi-tissue transcriptomic analysis with GraphDTA, a deep learning model, to screen for potential compound-target interactions of QFPDD in multiple tissues. We predicted 13 key active compounds, 127 potential targets and 27 pathways associated with QFPDD across six different tissues. Notably, oleanolic acid-AXL exhibited leading affinity in the heart, blood, and liver. Molecular docking and molecular dynamics simulation confirmed their strong binding affinity. The robust interaction between oleanolic acid and the AXL receptor suggests that AXL is a promising target for developing clinical intervention strategies. Through the construction of a multi-tissue compound-target interaction network, our study further elucidated the mechanisms through which QFPDD effectively combats COVID-19 in multiple tissues. Our work also establishes a framework for future investigations into the systemic effects of other Traditional Chinese Medicine (TCM) formulas in disease treatment.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.