Jing Cui, Weilin Chen, Dongdong Zhang, Mengqiu Lu, Zhijun Huang, Bin Yi
{"title":"Metformin attenuates PM<sub>2.5</sub>-induced oxidative stress by inhibiting the AhR/CYP1A1 pathway in proximal renal tubular epithelial cells.","authors":"Jing Cui, Weilin Chen, Dongdong Zhang, Mengqiu Lu, Zhijun Huang, Bin Yi","doi":"10.1080/15376516.2024.2378296","DOIUrl":null,"url":null,"abstract":"<p><p>The harmful effects of PM<sub>2.5</sub> on human health, including an increased risk of chronic kidney disease (CKD), have raised a lot of attention, but the underlying mechanisms are unclear. We used the Shanghai Meteorological and Environmental Animal Exposure System (Shanghai-METAS) to simulate the inhalation of PM<sub>2.5</sub> in the real environment and established an animal model by exposing C57BL/6 mice to filtered air (FA) and Particulate Matter (PM<sub>2.5</sub>) for 8 weeks. PM<sub>2.5</sub> impaired the renal function of the mice, and the renal tubules underwent destructive changes. Analysis of NHANES data showed a correlation between reduced kidney function and higher blood levels of PM<sub>2.5</sub> components, polychlorinated biphenyls (PCBs) and dioxins, which are Aryl hydrocarbon Receptor (AhR) ligands. PM<sub>2.5</sub> exposure induced higher levels of AhR and CYP1A1 and oxidative stress as evidenced by the higher levels of ROS, MDA, and GSSG in kidneys of mice. PM<sub>2.5</sub> exposure led to AhR overexpression and nuclear translocation in proximal renal tubular epithelial cells. Inhibition of AhR reduced CYP1A1 expression and PM<sub>2.5</sub>-increased levels of ROS, MDA and GSSG. Our study suggested metformin can mitigate PM<sub>2.5</sub>-induced oxidative stress by inhibiting the AhR/CYP1A1 pathway. These findings illuminated the role of AhR/CYP1A1 pathway in PM<sub>2.5</sub>-induced kidney injury and the protective effect of metformin on PM<sub>2.5</sub>-induced cellular damage, offering new insights for air pollution-related renal diseases.</p>","PeriodicalId":23177,"journal":{"name":"Toxicology Mechanisms and Methods","volume":" ","pages":"1022-1034"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2024.2378296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
The harmful effects of PM2.5 on human health, including an increased risk of chronic kidney disease (CKD), have raised a lot of attention, but the underlying mechanisms are unclear. We used the Shanghai Meteorological and Environmental Animal Exposure System (Shanghai-METAS) to simulate the inhalation of PM2.5 in the real environment and established an animal model by exposing C57BL/6 mice to filtered air (FA) and Particulate Matter (PM2.5) for 8 weeks. PM2.5 impaired the renal function of the mice, and the renal tubules underwent destructive changes. Analysis of NHANES data showed a correlation between reduced kidney function and higher blood levels of PM2.5 components, polychlorinated biphenyls (PCBs) and dioxins, which are Aryl hydrocarbon Receptor (AhR) ligands. PM2.5 exposure induced higher levels of AhR and CYP1A1 and oxidative stress as evidenced by the higher levels of ROS, MDA, and GSSG in kidneys of mice. PM2.5 exposure led to AhR overexpression and nuclear translocation in proximal renal tubular epithelial cells. Inhibition of AhR reduced CYP1A1 expression and PM2.5-increased levels of ROS, MDA and GSSG. Our study suggested metformin can mitigate PM2.5-induced oxidative stress by inhibiting the AhR/CYP1A1 pathway. These findings illuminated the role of AhR/CYP1A1 pathway in PM2.5-induced kidney injury and the protective effect of metformin on PM2.5-induced cellular damage, offering new insights for air pollution-related renal diseases.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.