Camino Bermejo-Rodriguez, Joaquín Araos Henríquez, Giuseppina Caligiuri, Sara Pinto Teles, Youngkyu Park, Anthony Evans, Lawrence N Barrera, Albrecht Neesse, Robert Grützmann, Daniela Aust, Petra Rümmele, Thomas Knösel, Masako Narita, Masashi Narita, Fiona Campbell, Daniel Öhlund, Christian Pilarsky, Lukas E Dow, Patrick O Humbert, Giulia Biffi, David A Tuveson, Pedro A Perez-Mancera
{"title":"Scribble Deficiency Promotes Pancreatic Ductal Adenocarcinoma Development and Metastasis.","authors":"Camino Bermejo-Rodriguez, Joaquín Araos Henríquez, Giuseppina Caligiuri, Sara Pinto Teles, Youngkyu Park, Anthony Evans, Lawrence N Barrera, Albrecht Neesse, Robert Grützmann, Daniela Aust, Petra Rümmele, Thomas Knösel, Masako Narita, Masashi Narita, Fiona Campbell, Daniel Öhlund, Christian Pilarsky, Lukas E Dow, Patrick O Humbert, Giulia Biffi, David A Tuveson, Pedro A Perez-Mancera","doi":"10.1158/0008-5472.CAN-23-3419","DOIUrl":null,"url":null,"abstract":"<p><p>Perturbation of cell polarity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) progression. Scribble (SCRIB) is a well-characterized polarity regulator that has diverse roles in the pathogenesis of human neoplasms. To investigate the impact of SCRIB deficiency in PDAC development and progression, Scrib expression was genetically ablated in well-established mouse models of PDAC. Scrib loss in combination with KrasG12D did not influence development of pancreatic intraepithelial neoplasms in mice. However, Scrib deletion cooperated with KrasG12D and concomitant Trp53 heterozygous deletion to promote invasive PDAC and metastatic dissemination, leading to reduced overall survival. Immunohistochemical and transcriptome analyses revealed that Scrib-null tumors display a pronounced reduction of collagen content and an abundance of cancer-associated fibroblasts (CAF). Mechanistically, IL1α levels were reduced in Scrib-deficient tumors, and Scrib knockdown downregulated IL1α in mouse PDAC organoids (mPDO), which impaired CAF activation. Furthermore, Scrib loss increased YAP activation in mPDOs and established PDAC cell lines, enhancing cell survival. Clinically, SCRIB expression was decreased in human PDAC, and SCRIB mislocalization was associated with poorer patient outcome. These results indicate that SCRIB deficiency enhances cancer cell survival and remodels the tumor microenvironment to accelerate PDAC development and progression, establishing the tumor suppressor function of SCRIB in advanced pancreatic cancer. Significance: SCRIB loss promotes invasive pancreatic cancer development via both cell-autonomous and non-cell-autonomous processes and is associated with poorer outcomes, denoting SCRIB as a tumor suppressor and potential biomarker for the prediction of recurrence.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-23-3419","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perturbation of cell polarity is a hallmark of pancreatic ductal adenocarcinoma (PDAC) progression. Scribble (SCRIB) is a well-characterized polarity regulator that has diverse roles in the pathogenesis of human neoplasms. To investigate the impact of SCRIB deficiency in PDAC development and progression, Scrib expression was genetically ablated in well-established mouse models of PDAC. Scrib loss in combination with KrasG12D did not influence development of pancreatic intraepithelial neoplasms in mice. However, Scrib deletion cooperated with KrasG12D and concomitant Trp53 heterozygous deletion to promote invasive PDAC and metastatic dissemination, leading to reduced overall survival. Immunohistochemical and transcriptome analyses revealed that Scrib-null tumors display a pronounced reduction of collagen content and an abundance of cancer-associated fibroblasts (CAF). Mechanistically, IL1α levels were reduced in Scrib-deficient tumors, and Scrib knockdown downregulated IL1α in mouse PDAC organoids (mPDO), which impaired CAF activation. Furthermore, Scrib loss increased YAP activation in mPDOs and established PDAC cell lines, enhancing cell survival. Clinically, SCRIB expression was decreased in human PDAC, and SCRIB mislocalization was associated with poorer patient outcome. These results indicate that SCRIB deficiency enhances cancer cell survival and remodels the tumor microenvironment to accelerate PDAC development and progression, establishing the tumor suppressor function of SCRIB in advanced pancreatic cancer. Significance: SCRIB loss promotes invasive pancreatic cancer development via both cell-autonomous and non-cell-autonomous processes and is associated with poorer outcomes, denoting SCRIB as a tumor suppressor and potential biomarker for the prediction of recurrence.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.