Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton
{"title":"Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization","authors":"Yacine M'Rad;Caecilia Charbonnier;Marcelo Elias de Oliveira;Pauline Coralie Guillemin;Lindsey Alexandra Crowe;Thibaud Kössler;Pierre-Alexandre Poletti;Sana Boudabbous;Alexis Ricoeur;Rares Salomir;Orane Lorton","doi":"10.1109/OJEMB.2024.3410118","DOIUrl":null,"url":null,"abstract":"Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from \n<italic>in vivo</i>\n HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"524-533"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549770","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10549770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. Methods: A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from
in vivo
HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). Results: As compared to the manual EP, the rotation difference with the TOP was on average −3.1 ± 7.1° and the distance difference was on average −7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.