Biocatalytic approach for the synthesis of chiral alcohols for the development of pharmaceutical intermediates and other industrial applications: A review
IF 3.4 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mohd Naim , Mohd Fazli Mohammat , Putri Nur Arina Mohd Ariff , Mohamad Hekarl Uzir
{"title":"Biocatalytic approach for the synthesis of chiral alcohols for the development of pharmaceutical intermediates and other industrial applications: A review","authors":"Mohd Naim , Mohd Fazli Mohammat , Putri Nur Arina Mohd Ariff , Mohamad Hekarl Uzir","doi":"10.1016/j.enzmictec.2024.110483","DOIUrl":null,"url":null,"abstract":"<div><p>Biocatalysis has emerged as a strong tool for the synthesis of active pharmaceutical ingredients (APIs). In the early twentieth century, whole cell biocatalysis was used to develop the first industrial biocatalytic processes, and the precise work of enzymes was unknown. Biocatalysis has evolved over the years into an essential tool for modern, cost-effective, and sustainable pharmaceutical manufacturing. Meanwhile, advances in directed evolution enable the rapid production of process-stable enzymes with broad substrate scope and high selectivity. Large-scale synthetic pathways incorporating biocatalytic critical steps towards >130 APIs of authorized pharmaceuticals and drug prospects are compared in terms of steps, reaction conditions, and scale with the corresponding chemical procedures. This review is designed on the functional group developed during the reaction forming alcohol functional groups. Some important biocatalyst sources, techniques, and challenges are described. A few APIs and their utilization in pharmaceutical drugs are explained here in this review. Biocatalysis has provided shorter, more efficient, and more sustainable alternative pathways toward existing small molecule APIs. Furthermore, non-pharmaceutical applications of biocatalysts are also mentioned and discussed. Finally, this review includes the future outlook and challenges of biocatalysis. In conclusion, Further research and development of promising enzymes are required before they can be used in industry.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110483"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000905","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biocatalysis has emerged as a strong tool for the synthesis of active pharmaceutical ingredients (APIs). In the early twentieth century, whole cell biocatalysis was used to develop the first industrial biocatalytic processes, and the precise work of enzymes was unknown. Biocatalysis has evolved over the years into an essential tool for modern, cost-effective, and sustainable pharmaceutical manufacturing. Meanwhile, advances in directed evolution enable the rapid production of process-stable enzymes with broad substrate scope and high selectivity. Large-scale synthetic pathways incorporating biocatalytic critical steps towards >130 APIs of authorized pharmaceuticals and drug prospects are compared in terms of steps, reaction conditions, and scale with the corresponding chemical procedures. This review is designed on the functional group developed during the reaction forming alcohol functional groups. Some important biocatalyst sources, techniques, and challenges are described. A few APIs and their utilization in pharmaceutical drugs are explained here in this review. Biocatalysis has provided shorter, more efficient, and more sustainable alternative pathways toward existing small molecule APIs. Furthermore, non-pharmaceutical applications of biocatalysts are also mentioned and discussed. Finally, this review includes the future outlook and challenges of biocatalysis. In conclusion, Further research and development of promising enzymes are required before they can be used in industry.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.