Prognosticating global functional outcome in the recurrent ischemic stroke using baseline clinical and pre-clinical features: A machine learning study.
Tran Nhat Phong Dao, Hien Nguyen Thanh Dang, My Thi Kim Pham, Hien Thi Nguyen, Cuong Tran Chi, Minh Van Le
{"title":"Prognosticating global functional outcome in the recurrent ischemic stroke using baseline clinical and pre-clinical features: A machine learning study.","authors":"Tran Nhat Phong Dao, Hien Nguyen Thanh Dang, My Thi Kim Pham, Hien Thi Nguyen, Cuong Tran Chi, Minh Van Le","doi":"10.1111/jep.14100","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Recurrent ischemic stroke (RIS) induces additional functional limitations in patients. Prognosticating globally functional outcome (GFO) in RIS patients is thereby important to plan a suitable rehabilitation programme. This study sought to investigate the ability of baseline features for classifying the patients with and without improving GFO (task 1) and identifying patients with poor GFO (task 2) at the third month after discharging from RIS.</p><p><strong>Methods: </strong>A total of 86 RIS patients were recruited and divided into the training set and testing set (50:50). The clinical and pre-clinical data were recorded. The outcome was the changes in Modified Rankin Scale (mRS) (task 1) and the mRS score at the third month (mRS 0-2: good GFO, mRS >2: poor GFO) (task 2). The permutation importance ranking method selected features. Four algorithms were trained on the training set with five-fold cross-validation. The best model was tested on the testing set.</p><p><strong>Results: </strong>In task 1, the support vector machine (SVM) model outperformed the other models, with the high performance matrix on the training set (sensitivity = 0.80; specificity = 1.00) and the testing set (sensitivity = 0.80; specificity = 0.95). In task 2, the SVM model with selected features also performed well on both datasets (training set: sensitivity = 0.76; specificity = 0.92; testing set: sensitivity = 0.72; specificity = 0.88).</p><p><strong>Conclusion: </strong>A machine learning model could be used to classify GFO responses to treatment and identify the third-month poor GFO in RIS patients, supporting physicians in clinical practice.</p>","PeriodicalId":15997,"journal":{"name":"Journal of evaluation in clinical practice","volume":" ","pages":"e14100"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of evaluation in clinical practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jep.14100","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Recurrent ischemic stroke (RIS) induces additional functional limitations in patients. Prognosticating globally functional outcome (GFO) in RIS patients is thereby important to plan a suitable rehabilitation programme. This study sought to investigate the ability of baseline features for classifying the patients with and without improving GFO (task 1) and identifying patients with poor GFO (task 2) at the third month after discharging from RIS.
Methods: A total of 86 RIS patients were recruited and divided into the training set and testing set (50:50). The clinical and pre-clinical data were recorded. The outcome was the changes in Modified Rankin Scale (mRS) (task 1) and the mRS score at the third month (mRS 0-2: good GFO, mRS >2: poor GFO) (task 2). The permutation importance ranking method selected features. Four algorithms were trained on the training set with five-fold cross-validation. The best model was tested on the testing set.
Results: In task 1, the support vector machine (SVM) model outperformed the other models, with the high performance matrix on the training set (sensitivity = 0.80; specificity = 1.00) and the testing set (sensitivity = 0.80; specificity = 0.95). In task 2, the SVM model with selected features also performed well on both datasets (training set: sensitivity = 0.76; specificity = 0.92; testing set: sensitivity = 0.72; specificity = 0.88).
Conclusion: A machine learning model could be used to classify GFO responses to treatment and identify the third-month poor GFO in RIS patients, supporting physicians in clinical practice.
期刊介绍:
The Journal of Evaluation in Clinical Practice aims to promote the evaluation and development of clinical practice across medicine, nursing and the allied health professions. All aspects of health services research and public health policy analysis and debate are of interest to the Journal whether studied from a population-based or individual patient-centred perspective. Of particular interest to the Journal are submissions on all aspects of clinical effectiveness and efficiency including evidence-based medicine, clinical practice guidelines, clinical decision making, clinical services organisation, implementation and delivery, health economic evaluation, health process and outcome measurement and new or improved methods (conceptual and statistical) for systematic inquiry into clinical practice. Papers may take a classical quantitative or qualitative approach to investigation (or may utilise both techniques) or may take the form of learned essays, structured/systematic reviews and critiques.