{"title":"Retinal Blood Vessels Segmentation With Improved SE-UNet Model","authors":"Yibo Wan, Gaofeng Wei, Renxing Li, Yifan Xiang, Dechao Yin, Minglei Yang, Deren Gong, Jiangang Chen","doi":"10.1002/ima.23145","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate segmentation of retinal vessels is crucial for the early diagnosis and treatment of eye diseases, for example, diabetic retinopathy, glaucoma, and macular degeneration. Due to the intricate structure of retinal vessels, it is essential to extract their features with precision for the semantic segmentation of medical images. In this study, an improved deep learning neural network was developed with a focus on feature extraction based on the U-Net structure. The enhanced U-Net combines the architecture of convolutional neural networks (CNNs) with SE blocks (squeeze-and-excitation blocks) to adaptively extract image features after each U-Net encoder's convolution. This approach aids in suppressing nonvascular regions and highlighting features for specific segmentation tasks. The proposed method was trained and tested on the DRIVECHASE_DB1 and STARE datasets. As a result, the proposed model had an algorithmic accuracy, sensitivity, specificity, Dice coefficient (Dc), and Matthews correlation coefficient (MCC) of 95.62/0.9853/0.9652, 0.7751/0.7976/0.7773, 0.9832/0.8567/0.9865, 82.53/87.23/83.42, and 0.7823/0.7987/0.8345, respectively, outperforming previous methods, including UNet++, attention U-Net, and ResUNet. The experimental results demonstrated that the proposed method improved the retinal vessel segmentation performance.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate segmentation of retinal vessels is crucial for the early diagnosis and treatment of eye diseases, for example, diabetic retinopathy, glaucoma, and macular degeneration. Due to the intricate structure of retinal vessels, it is essential to extract their features with precision for the semantic segmentation of medical images. In this study, an improved deep learning neural network was developed with a focus on feature extraction based on the U-Net structure. The enhanced U-Net combines the architecture of convolutional neural networks (CNNs) with SE blocks (squeeze-and-excitation blocks) to adaptively extract image features after each U-Net encoder's convolution. This approach aids in suppressing nonvascular regions and highlighting features for specific segmentation tasks. The proposed method was trained and tested on the DRIVECHASE_DB1 and STARE datasets. As a result, the proposed model had an algorithmic accuracy, sensitivity, specificity, Dice coefficient (Dc), and Matthews correlation coefficient (MCC) of 95.62/0.9853/0.9652, 0.7751/0.7976/0.7773, 0.9832/0.8567/0.9865, 82.53/87.23/83.42, and 0.7823/0.7987/0.8345, respectively, outperforming previous methods, including UNet++, attention U-Net, and ResUNet. The experimental results demonstrated that the proposed method improved the retinal vessel segmentation performance.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.