A multi-task learning strategy to pretrain models for medical image analysis

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"A multi-task learning strategy to pretrain models for medical image analysis","authors":"","doi":"10.1038/s43588-024-00666-9","DOIUrl":null,"url":null,"abstract":"Pretraining powerful deep learning models requires large, comprehensive training datasets, which are often unavailable for medical imaging. In response, the universal biomedical pretrained (UMedPT) foundational model was developed based on multiple small and medium-sized datasets. This model reduced the amount of data required to learn new target tasks by at least 50%.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"479-480"},"PeriodicalIF":12.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00666-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Pretraining powerful deep learning models requires large, comprehensive training datasets, which are often unavailable for medical imaging. In response, the universal biomedical pretrained (UMedPT) foundational model was developed based on multiple small and medium-sized datasets. This model reduced the amount of data required to learn new target tasks by at least 50%.

Abstract Image

Abstract Image

用于医学图像分析模型预训练的多任务学习策略。
对功能强大的深度学习模型进行预训练需要大型、全面的训练数据集,而医学影像通常无法获得这些数据集。为此,基于多个中小型数据集开发了通用生物医学预训练(UMedPT)基础模型。该模型将学习新目标任务所需的数据量减少了至少 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信