Improvement of image quality for bright-blood image in VISIBLE (volume isotropic simultaneous interleaved bright- and black-blood examination) by using k-space reordering and startup echoes
IF 2.1 4区 医学Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Improvement of image quality for bright-blood image in VISIBLE (volume isotropic simultaneous interleaved bright- and black-blood examination) by using k-space reordering and startup echoes","authors":"Tatsuhiro Wada , Kazufumi Kikuchi , Makoto Obara , Chiaki Tokunaga , Koji Yamashita , Koji Kobayashi , Toyoyuki Kato , Kousei Ishigami , Osamu Togao","doi":"10.1016/j.mri.2024.07.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>A volume isotropic simultaneous interleaved bright- and black-blood examination (VISIBLE) can simultaneously acquire images with suppressed vascular signals (black-blood images) and images without suppression (bright-blood images). We aimed to improve of the bright-blood images by adjusting the k-space filling and using startup echo.</p></div><div><h3>Methods</h3><p>The k-space arrangement of bright-blood images in the conventional VISIBLE followed a low-to-high frequency order, whereas that in the proposed VISIBLE sequence was in the reversed order, and a startup echo was added. The effects of startup echo on the signal-to-noise ratio (SNR) were evaluated using phantoms, considering both white matter (WM) and post-contrast blood. Data from copper sulfate phantoms were acquired in 1D Fourier transform mode using both the conventional and proposed methods of the two VISIBLE sequences. The signal behavior with each sequence was evaluated. Fourteen patients with a total of 21 metastases were included in the study. For each patient, VISIBLE images of both conventional and proposed methods were obtained consecutively after the contrast agent administration. Using clinical images, we conducted a comparison of the SNR and contrast-to-noise ratio (CNR) for tumors, normal WM, and blood vessels between the conventional and proposed VISIBLE sequences.</p></div><div><h3>Results</h3><p>There was no significant difference in SNRs for both black- and bright-blood images between the conventional sequence and the proposed sequence with different number of startup echoes, however, the SNR of the proposed sequence decreased with increasing number of startup echoes in both black- and bright-images. The signal behavior of the bright-blood image reached a “steady state” when the startup echo exceeded 20. The SNRs of blood vessels in the bright-blood images did not differ significantly between conventional and proposed VISIBLE sequences. The SNRs of WM in the bright-blood images was significantly larger in the conventional sequence than in the proposed sequence. The SNRs of tumors in bright blood images was significantly larger in the proposed sequence than in the conventional sequence. The CNRs between tumors and WM, vessels and WM in the bright-blood images were significantly higher in the proposed sequence than in the conventional sequence.</p></div><div><h3>Conclusion</h3><p>The use of the startup echo in combination with the high-to-low frequency k-space ordering method resulted in improved CNR of the bright-blood images in the VISIBLE sequence.</p></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"112 ","pages":"Pages 144-150"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24001875","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
A volume isotropic simultaneous interleaved bright- and black-blood examination (VISIBLE) can simultaneously acquire images with suppressed vascular signals (black-blood images) and images without suppression (bright-blood images). We aimed to improve of the bright-blood images by adjusting the k-space filling and using startup echo.
Methods
The k-space arrangement of bright-blood images in the conventional VISIBLE followed a low-to-high frequency order, whereas that in the proposed VISIBLE sequence was in the reversed order, and a startup echo was added. The effects of startup echo on the signal-to-noise ratio (SNR) were evaluated using phantoms, considering both white matter (WM) and post-contrast blood. Data from copper sulfate phantoms were acquired in 1D Fourier transform mode using both the conventional and proposed methods of the two VISIBLE sequences. The signal behavior with each sequence was evaluated. Fourteen patients with a total of 21 metastases were included in the study. For each patient, VISIBLE images of both conventional and proposed methods were obtained consecutively after the contrast agent administration. Using clinical images, we conducted a comparison of the SNR and contrast-to-noise ratio (CNR) for tumors, normal WM, and blood vessels between the conventional and proposed VISIBLE sequences.
Results
There was no significant difference in SNRs for both black- and bright-blood images between the conventional sequence and the proposed sequence with different number of startup echoes, however, the SNR of the proposed sequence decreased with increasing number of startup echoes in both black- and bright-images. The signal behavior of the bright-blood image reached a “steady state” when the startup echo exceeded 20. The SNRs of blood vessels in the bright-blood images did not differ significantly between conventional and proposed VISIBLE sequences. The SNRs of WM in the bright-blood images was significantly larger in the conventional sequence than in the proposed sequence. The SNRs of tumors in bright blood images was significantly larger in the proposed sequence than in the conventional sequence. The CNRs between tumors and WM, vessels and WM in the bright-blood images were significantly higher in the proposed sequence than in the conventional sequence.
Conclusion
The use of the startup echo in combination with the high-to-low frequency k-space ordering method resulted in improved CNR of the bright-blood images in the VISIBLE sequence.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.