{"title":"Adaptive Cache Policy Optimization Through Deep Reinforcement Learning in Dynamic Cellular Networks","authors":"Ashvin Srinivasan;Mohsen Amidzadeh;Junshan Zhang;Olav Tirkkonen","doi":"10.23919/ICN.2024.0007","DOIUrl":null,"url":null,"abstract":"We explore the use of caching both at the network edge and within User Equipment (UE) to alleviate traffic load of wireless networks. We develop a joint cache placement and delivery policy that maximizes the Quality of Service (QoS) while simultaneously minimizing backhaul load and UE power consumption, in the presence of an unknown time-variant file popularity. With file requests in a time slot being affected by download success in the previous slot, the caching system becomes a non-stationary Partial Observable Markov Decision Process (POMDP). We solve the problem in a deep reinforcement learning framework based on the Advantageous Actor-Critic (A2C) algorithm, comparing Feed Forward Neural Networks (FFNN) with a Long Short-Term Memory (LSTM) approach specifically designed to exploit the correlation of file popularity distribution across time slots. Simulation results show that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality, demonstrating superior performance for the non-stationary POMDP problem. For caching at the UEs, we provide a distributed algorithm that reaches the objectives dictated by the agent controlling the network, with minimum energy consumption at the UEs, and minimum communication overhead.","PeriodicalId":100681,"journal":{"name":"Intelligent and Converged Networks","volume":"5 2","pages":"81-99"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601662","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent and Converged Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10601662/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We explore the use of caching both at the network edge and within User Equipment (UE) to alleviate traffic load of wireless networks. We develop a joint cache placement and delivery policy that maximizes the Quality of Service (QoS) while simultaneously minimizing backhaul load and UE power consumption, in the presence of an unknown time-variant file popularity. With file requests in a time slot being affected by download success in the previous slot, the caching system becomes a non-stationary Partial Observable Markov Decision Process (POMDP). We solve the problem in a deep reinforcement learning framework based on the Advantageous Actor-Critic (A2C) algorithm, comparing Feed Forward Neural Networks (FFNN) with a Long Short-Term Memory (LSTM) approach specifically designed to exploit the correlation of file popularity distribution across time slots. Simulation results show that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality, demonstrating superior performance for the non-stationary POMDP problem. For caching at the UEs, we provide a distributed algorithm that reaches the objectives dictated by the agent controlling the network, with minimum energy consumption at the UEs, and minimum communication overhead.