Augusto Aubry;Marco Boddi;Antonio De Maio;Massimo Rosamilia
{"title":"Sparse DOA Estimation With Polarimetric Arrays","authors":"Augusto Aubry;Marco Boddi;Antonio De Maio;Massimo Rosamilia","doi":"10.1109/OJSP.2024.3411468","DOIUrl":null,"url":null,"abstract":"This paper addresses the Direction-of-Arrival (DOA) estimation problem using a narrowband polarimetric array sensing system. The considered receiving equipment is composed of two sub-arrays of sensors with orthogonal polarizations. By suitably modeling the received signal via a sparse representation (accounting for the multiple snapshots and the polarimetric array manifold structure), two iterative algorithms, namely Polarimetric Sparse Learning via Iterative Minimization (POL-SLIM) and Polarimetric Sparse Iterative Covariance-based Estimation (POL-SPICE), are devised to accomplish the estimation task. The proposed algorithms provide accurate DOA estimates while enjoying nice (rigorously proven) convergence properties. Numerical analysis shows the effectiveness of POL-SLIM and POL-SPICE to successfully locate signal sources in both passive sensing applications (with large numbers of collected snapshots) and radar spatial processing, also in comparison with single-polarization counterparts as well as theoretical benchmarks.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"886-901"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552043/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the Direction-of-Arrival (DOA) estimation problem using a narrowband polarimetric array sensing system. The considered receiving equipment is composed of two sub-arrays of sensors with orthogonal polarizations. By suitably modeling the received signal via a sparse representation (accounting for the multiple snapshots and the polarimetric array manifold structure), two iterative algorithms, namely Polarimetric Sparse Learning via Iterative Minimization (POL-SLIM) and Polarimetric Sparse Iterative Covariance-based Estimation (POL-SPICE), are devised to accomplish the estimation task. The proposed algorithms provide accurate DOA estimates while enjoying nice (rigorously proven) convergence properties. Numerical analysis shows the effectiveness of POL-SLIM and POL-SPICE to successfully locate signal sources in both passive sensing applications (with large numbers of collected snapshots) and radar spatial processing, also in comparison with single-polarization counterparts as well as theoretical benchmarks.