Hye-Yoon Jeon, Ah-Jun Lee, Chan-Hee Moon, Kwon-Soo Ha
{"title":"Regulation of AMPK and GAPDH by Transglutaminase 2 Plays a Pivotal Role in Microvascular Leakage in Diabetic Retinas.","authors":"Hye-Yoon Jeon, Ah-Jun Lee, Chan-Hee Moon, Kwon-Soo Ha","doi":"10.2337/db23-0885","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy is the most common microvascular complication caused by chronic hyperglycemia and is a leading cause of blindness; however, the underlying molecular mechanism has not been clearly elucidated. Therefore, we investigated whether regulation of AMPK and GAPDH by transglutaminase 2 (TGase2) is important for hyperglycemia-induced microvascular leakage in the diabetic retina. In human retinal endothelial cells (HRECs) and diabetic mouse retinas, we found that TGase2, activated by sequential elevation of intracellular Ca2+ and reactive oxygen species (ROS) levels, played an essential role in hyperglycemia-induced vascular leakage. ROS generation and TGsae2 activation were involved in hyperglycemia-induced AMPK dephosphorylation, which resulted in vascular endothelial-cadherin (VE-cadherin) disassembly and increased fluorescein isothiocyanate-dextran extravasation. Furthermore, high glucose-induced TGase2 activation suppressed GAPDH activity, determined by an on-chip activity assay, through inhibition of AMPK, which induced VE-cadherin disassembly and endothelial permeability in HRECs. Overall, our findings suggest that inhibition of AMPK and GAPDH by TGase2 plays a pivotal role in hyperglycemia-induced microvascular leakage in the retinas of diabetic mice.</p><p><strong>Article highlights: </strong></p>","PeriodicalId":93977,"journal":{"name":"Diabetes","volume":" ","pages":"1756-1766"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/db23-0885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy is the most common microvascular complication caused by chronic hyperglycemia and is a leading cause of blindness; however, the underlying molecular mechanism has not been clearly elucidated. Therefore, we investigated whether regulation of AMPK and GAPDH by transglutaminase 2 (TGase2) is important for hyperglycemia-induced microvascular leakage in the diabetic retina. In human retinal endothelial cells (HRECs) and diabetic mouse retinas, we found that TGase2, activated by sequential elevation of intracellular Ca2+ and reactive oxygen species (ROS) levels, played an essential role in hyperglycemia-induced vascular leakage. ROS generation and TGsae2 activation were involved in hyperglycemia-induced AMPK dephosphorylation, which resulted in vascular endothelial-cadherin (VE-cadherin) disassembly and increased fluorescein isothiocyanate-dextran extravasation. Furthermore, high glucose-induced TGase2 activation suppressed GAPDH activity, determined by an on-chip activity assay, through inhibition of AMPK, which induced VE-cadherin disassembly and endothelial permeability in HRECs. Overall, our findings suggest that inhibition of AMPK and GAPDH by TGase2 plays a pivotal role in hyperglycemia-induced microvascular leakage in the retinas of diabetic mice.