Cristian Felipe Blanco-Diaz, Cristian David Guerrero-Mendez, Rafhael Milanezi de Andrade, Claudine Badue, Alberto Ferreira De Souza, Denis Delisle-Rodriguez, Teodiano Bastos-Filho
{"title":"Decoding lower-limb kinematic parameters during pedaling tasks using deep learning approaches and EEG.","authors":"Cristian Felipe Blanco-Diaz, Cristian David Guerrero-Mendez, Rafhael Milanezi de Andrade, Claudine Badue, Alberto Ferreira De Souza, Denis Delisle-Rodriguez, Teodiano Bastos-Filho","doi":"10.1007/s11517-024-03147-3","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a neurological condition that usually results in the loss of voluntary control of body movements, making it difficult for individuals to perform activities of daily living (ADLs). Brain-computer interfaces (BCIs) integrated into robotic systems, such as motorized mini exercise bikes (MMEBs), have been demonstrated to be suitable for restoring gait-related functions. However, kinematic estimation of continuous motion in BCI systems based on electroencephalography (EEG) remains a challenge for the scientific community. This study proposes a comparative analysis to evaluate two artificial neural network (ANN)-based decoders to estimate three lower-limb kinematic parameters: x- and y-axis position of the ankle and knee joint angle during pedaling tasks. Long short-term memory (LSTM) was used as a recurrent neural network (RNN), which reached Pearson correlation coefficient (PCC) scores close to 0.58 by reconstructing kinematic parameters from the EEG features on the delta band using a time window of 250 ms. These estimates were evaluated through kinematic variance analysis, where our proposed algorithm showed promising results for identifying pedaling and rest periods, which could increase the usability of classification tasks. Additionally, negative linear correlations were found between pedaling speed and decoder performance, thereby indicating that kinematic parameters between slower speeds may be easier to estimate. The results allow concluding that the use of deep learning (DL)-based methods is feasible for the estimation of lower-limb kinematic parameters during pedaling tasks using EEG signals. This study opens new possibilities for implementing controllers most robust for MMEBs and BCIs based on continuous decoding, which may allow for maximizing the degrees of freedom and personalized rehabilitation.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3763-3779"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11517-024-03147-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke is a neurological condition that usually results in the loss of voluntary control of body movements, making it difficult for individuals to perform activities of daily living (ADLs). Brain-computer interfaces (BCIs) integrated into robotic systems, such as motorized mini exercise bikes (MMEBs), have been demonstrated to be suitable for restoring gait-related functions. However, kinematic estimation of continuous motion in BCI systems based on electroencephalography (EEG) remains a challenge for the scientific community. This study proposes a comparative analysis to evaluate two artificial neural network (ANN)-based decoders to estimate three lower-limb kinematic parameters: x- and y-axis position of the ankle and knee joint angle during pedaling tasks. Long short-term memory (LSTM) was used as a recurrent neural network (RNN), which reached Pearson correlation coefficient (PCC) scores close to 0.58 by reconstructing kinematic parameters from the EEG features on the delta band using a time window of 250 ms. These estimates were evaluated through kinematic variance analysis, where our proposed algorithm showed promising results for identifying pedaling and rest periods, which could increase the usability of classification tasks. Additionally, negative linear correlations were found between pedaling speed and decoder performance, thereby indicating that kinematic parameters between slower speeds may be easier to estimate. The results allow concluding that the use of deep learning (DL)-based methods is feasible for the estimation of lower-limb kinematic parameters during pedaling tasks using EEG signals. This study opens new possibilities for implementing controllers most robust for MMEBs and BCIs based on continuous decoding, which may allow for maximizing the degrees of freedom and personalized rehabilitation.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).