Achamyeleh Birhanu Teshale, Htet Lin Htun, Mor Vered, Alice J Owen, Rosanne Freak-Poli
{"title":"A Systematic Review of Artificial Intelligence Models for Time-to-Event Outcome Applied in Cardiovascular Disease Risk Prediction.","authors":"Achamyeleh Birhanu Teshale, Htet Lin Htun, Mor Vered, Alice J Owen, Rosanne Freak-Poli","doi":"10.1007/s10916-024-02087-7","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) based predictive models for early detection of cardiovascular disease (CVD) risk are increasingly being utilised. However, AI based risk prediction models that account for right-censored data have been overlooked. This systematic review (PROSPERO protocol CRD42023492655) includes 33 studies that utilised machine learning (ML) and deep learning (DL) models for survival outcome in CVD prediction. We provided details on the employed ML and DL models, eXplainable AI (XAI) techniques, and type of included variables, with a focus on social determinants of health (SDoH) and gender-stratification. Approximately half of the studies were published in 2023 with the majority from the United States. Random Survival Forest (RSF), Survival Gradient Boosting models, and Penalised Cox models were the most frequently employed ML models. DeepSurv was the most frequently employed DL model. DL models were better at predicting CVD outcomes than ML models. Permutation-based feature importance and Shapley values were the most utilised XAI methods for explaining AI models. Moreover, only one in five studies performed gender-stratification analysis and very few incorporate the wide range of SDoH factors in their prediction model. In conclusion, the evidence indicates that RSF and DeepSurv models are currently the optimal models for predicting CVD outcomes. This study also highlights the better predictive ability of DL survival models, compared to ML models. Future research should ensure the appropriate interpretation of AI models, accounting for SDoH, and gender stratification, as gender plays a significant role in CVD occurrence.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"48 1","pages":"68"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02087-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) based predictive models for early detection of cardiovascular disease (CVD) risk are increasingly being utilised. However, AI based risk prediction models that account for right-censored data have been overlooked. This systematic review (PROSPERO protocol CRD42023492655) includes 33 studies that utilised machine learning (ML) and deep learning (DL) models for survival outcome in CVD prediction. We provided details on the employed ML and DL models, eXplainable AI (XAI) techniques, and type of included variables, with a focus on social determinants of health (SDoH) and gender-stratification. Approximately half of the studies were published in 2023 with the majority from the United States. Random Survival Forest (RSF), Survival Gradient Boosting models, and Penalised Cox models were the most frequently employed ML models. DeepSurv was the most frequently employed DL model. DL models were better at predicting CVD outcomes than ML models. Permutation-based feature importance and Shapley values were the most utilised XAI methods for explaining AI models. Moreover, only one in five studies performed gender-stratification analysis and very few incorporate the wide range of SDoH factors in their prediction model. In conclusion, the evidence indicates that RSF and DeepSurv models are currently the optimal models for predicting CVD outcomes. This study also highlights the better predictive ability of DL survival models, compared to ML models. Future research should ensure the appropriate interpretation of AI models, accounting for SDoH, and gender stratification, as gender plays a significant role in CVD occurrence.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.