Huilei Wang, Marta Martinez Yus, Travis Brady, Rira Choi, Kavitha Nandakumar, Logan Smith, Rosie Jang, Bulouere Princess Wodu, Jose Diego Almodiel, Laila Stoddart, Deok-Ho Kim, Jochen Steppan, Lakshmi Santhanam
{"title":"Sex differences and role of lysyl oxidase-like 2 in angiotensin II-induced hypertension in mice.","authors":"Huilei Wang, Marta Martinez Yus, Travis Brady, Rira Choi, Kavitha Nandakumar, Logan Smith, Rosie Jang, Bulouere Princess Wodu, Jose Diego Almodiel, Laila Stoddart, Deok-Ho Kim, Jochen Steppan, Lakshmi Santhanam","doi":"10.1152/ajpheart.00110.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension, a disease with known sexual dimorphism, accelerates aging-associated arterial stiffening, partly because of the activation of matrix remodeling caused by increased biomechanical load. In this study, we tested the effect of biological sex and the role of the matrix remodeling enzyme lysyl oxidase-like 2 (LOXL2) in hypertension-induced arterial stiffening. Hypertension was induced by angiotensin II (ANG II) infusion via osmotic minipumps in 12- to 14-wk-old male and female mice. Blood pressure and pulse wave velocity (PWV) were measured noninvasively. Wire myography and uniaxial tensile testing were used to test aortic vasoreactivity and mechanical properties. Aortic wall composition was examined by histology and Western blotting. Uniaxial stretch of cultured cells was used to evaluate the effect of biomechanical strain. LOXL2's catalytic function was examined using knockout and inhibition. ANG II infusion-induced hypertension in both genotypes and sexes. Wild-type (WT) males exhibited arterial stiffening in vivo and ex vivo. Aortic remodeling with increased wall thickness, intralamellar distance, higher LOXL2, and collagen I and IV content was noted in WT males. Female mice did not exhibit increased PWV despite the onset of hypertension. LOXL2 depletion improved vascular reactivity and mechanics in hypertensive males. LOXL2 depletion improved aortic mechanics but worsened hypercontractility in females. Hypertensive cyclic strain contributed to LOXL2 upregulation in the cell-derived matrix in vascular smooth muscle cells (VSMCs) but not endothelial cells. LOXL2's catalytic function facilitated VSMC alignment in response to biomechanical strain. In conclusion, in males, arterial stiffening in hypertension is driven both by VSMC response and matrix remodeling. Females are protected from PWV elevation in hypertension. LOXL2 depletion is protective in males with improved mechanical and functional aortic properties. VSMCs are the primary source of LOXL2 in the aorta, and hypertension increases LOXL2 processing and shifts to collagen I accumulation. Overall, LOXL2 depletion offers protection in young hypertensive males and females.<b>NEW & NOTEWORTHY</b> We examined the effect of sex on the evolution of angiotensin II (ANG II)-induced hypertension and the role of lysyl oxidase-like 2 (LOXL2), an enzyme that catalyzes matrix cross linking. While ANG II led to hypertension and worsening vascular reactivity in both sexes, aortic remodeling and stiffening occurred only in males. LOXL2 depletion improved outcomes in males but not females. Thus males and females exhibit a distinct etiology of hypertension and LOXL2 is an effective target in males.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H642-H659"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00110.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertension, a disease with known sexual dimorphism, accelerates aging-associated arterial stiffening, partly because of the activation of matrix remodeling caused by increased biomechanical load. In this study, we tested the effect of biological sex and the role of the matrix remodeling enzyme lysyl oxidase-like 2 (LOXL2) in hypertension-induced arterial stiffening. Hypertension was induced by angiotensin II (ANG II) infusion via osmotic minipumps in 12- to 14-wk-old male and female mice. Blood pressure and pulse wave velocity (PWV) were measured noninvasively. Wire myography and uniaxial tensile testing were used to test aortic vasoreactivity and mechanical properties. Aortic wall composition was examined by histology and Western blotting. Uniaxial stretch of cultured cells was used to evaluate the effect of biomechanical strain. LOXL2's catalytic function was examined using knockout and inhibition. ANG II infusion-induced hypertension in both genotypes and sexes. Wild-type (WT) males exhibited arterial stiffening in vivo and ex vivo. Aortic remodeling with increased wall thickness, intralamellar distance, higher LOXL2, and collagen I and IV content was noted in WT males. Female mice did not exhibit increased PWV despite the onset of hypertension. LOXL2 depletion improved vascular reactivity and mechanics in hypertensive males. LOXL2 depletion improved aortic mechanics but worsened hypercontractility in females. Hypertensive cyclic strain contributed to LOXL2 upregulation in the cell-derived matrix in vascular smooth muscle cells (VSMCs) but not endothelial cells. LOXL2's catalytic function facilitated VSMC alignment in response to biomechanical strain. In conclusion, in males, arterial stiffening in hypertension is driven both by VSMC response and matrix remodeling. Females are protected from PWV elevation in hypertension. LOXL2 depletion is protective in males with improved mechanical and functional aortic properties. VSMCs are the primary source of LOXL2 in the aorta, and hypertension increases LOXL2 processing and shifts to collagen I accumulation. Overall, LOXL2 depletion offers protection in young hypertensive males and females.NEW & NOTEWORTHY We examined the effect of sex on the evolution of angiotensin II (ANG II)-induced hypertension and the role of lysyl oxidase-like 2 (LOXL2), an enzyme that catalyzes matrix cross linking. While ANG II led to hypertension and worsening vascular reactivity in both sexes, aortic remodeling and stiffening occurred only in males. LOXL2 depletion improved outcomes in males but not females. Thus males and females exhibit a distinct etiology of hypertension and LOXL2 is an effective target in males.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.