Dirichlet spaces over chord-arc domains

Huaying Wei, Michel Zinsmeister
{"title":"Dirichlet spaces over chord-arc domains","authors":"Huaying Wei, Michel Zinsmeister","doi":"arxiv-2407.11577","DOIUrl":null,"url":null,"abstract":"If $U$ is a $C^{\\infty}$ function with compact support in the plane, we let\n$u$ be its restriction to the unit circle $\\mathbb{S}$, and denote by\n$U_i,\\,U_e$ the harmonic extensions of $u$ respectively in the interior and the\nexterior of $\\mathbb S$ on the Riemann sphere. About a hundred years ago,\nDouglas has shown that \\begin{align*} \\iint_{\\mathbb{D}}|\\nabla U_i|^2(z)dxdy&=\n\\iint_{\\bar{\\mathbb{C}}\\backslash\\bar{\\mathbb{D}}}|\\nabla U_e|^2(z)dxdy &= \\frac{1}{2\\pi}\\iint_{\\mathbb S\\times\\mathbb\nS}\\left|\\frac{u(z_1)-u(z_2)}{z_1-z_2}\\right|^2|dz_1||dz_2|, \\end{align*} thus\ngiving three ways to express the Dirichlet norm of $u$. On a rectifiable Jordan\ncurve $\\Gamma$ we have obvious analogues of these three expressions, which will\nof course not be equal in general. The main goal of this paper is to show that\nthese $3$ (semi-)norms are equivalent if and only if $\\Gamma$ is a chord-arc\ncurve.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If $U$ is a $C^{\infty}$ function with compact support in the plane, we let $u$ be its restriction to the unit circle $\mathbb{S}$, and denote by $U_i,\,U_e$ the harmonic extensions of $u$ respectively in the interior and the exterior of $\mathbb S$ on the Riemann sphere. About a hundred years ago, Douglas has shown that \begin{align*} \iint_{\mathbb{D}}|\nabla U_i|^2(z)dxdy&= \iint_{\bar{\mathbb{C}}\backslash\bar{\mathbb{D}}}|\nabla U_e|^2(z)dxdy &= \frac{1}{2\pi}\iint_{\mathbb S\times\mathbb S}\left|\frac{u(z_1)-u(z_2)}{z_1-z_2}\right|^2|dz_1||dz_2|, \end{align*} thus giving three ways to express the Dirichlet norm of $u$. On a rectifiable Jordan curve $\Gamma$ we have obvious analogues of these three expressions, which will of course not be equal in general. The main goal of this paper is to show that these $3$ (semi-)norms are equivalent if and only if $\Gamma$ is a chord-arc curve.
弦弧域上的德里赫特空间
如果 $U$ 是一个在平面上具有紧凑支持的 $C^{infty}$ 函数,我们设$u$ 是它对单位圆 $\mathbb{S}$ 的限制,并用$U_i,\,U_e$ 表示 $u$ 分别在黎曼球上 $\mathbb S$ 的内部和外部的谐波扩展。大约一百年前,道格拉斯证明了\iint_{\mathbb{D}}|\nabla U_i|^2(z)dxdy&=\iint_{\bar{\mathbb{C}}\backslash\bar{\mathbb{D}}}|\nabla U_e|^2(z)dxdy &= \frac{1}{2\pi}\iint_{\mathbb S\times\mathbbS}\left|\frac{u(z_1)-u(z_2)}{z_1-z_2}\right|^2|dz_1||dz_2|,\end{align*}因此有三种方法来表达 $u$ 的狄利克特规范。在一条可矫正的乔丹曲线 $\Gamma$ 上,我们有这三种表达式的明显类似物,当然它们在一般情况下并不相等。本文的主要目标是证明,当且仅当 $\Gamma$ 是一条弦-曲线时,这三个 $$(半)规范是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信