{"title":"dg-Hecke Duality and Tensor Products","authors":"Peter Schneider, Claus Sorensen","doi":"10.1093/imrn/rnae156","DOIUrl":null,"url":null,"abstract":"We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\\underline{\\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We continue our study of the monoidal category $D(G)$ begun in [ 12]. At the level of cohomology we transfer the duality functor $R\underline{\operatorname{Hom}}(-,k)$ to the derived category of dg-modules $D(H_{U}^{\bullet })$. In the process we develop a more general and streamlined approach to the anti-involution $\mathscr J$ from [ 8]. We also verify that the tensor product on $D(G)$ corresponds to an operadic tensor product on the dg-side (cf [ 5]). This uses a result of Schnürer on dg-categories with a model structure.