Integration of the Modified Korteweg-de Vries Equation with Time-Dependent Coefficients and a Self-Consistent Source

Pub Date : 2024-07-16 DOI:10.1134/s0037446624040220
Sh. K. Sobirov, U. A. Hoitmetov
{"title":"Integration of the Modified Korteweg-de Vries Equation with Time-Dependent Coefficients and a Self-Consistent Source","authors":"Sh. K. Sobirov, U. A. Hoitmetov","doi":"10.1134/s0037446624040220","DOIUrl":null,"url":null,"abstract":"<p>We consider the Cauchy problem for the modified Korteweg-de Vries equation\nwith time-dependent coefficients and a self-consistent source in the class of rapidly decreasing functions.\nTo solve the problem, we find Lax pairs and employ the inverse scattering method.\nNote that in the case under study the Dirac operator is not selfadjoint, and so the eigenvalues can be multiples.\nWe find the equations describing the dynamics in time of the scattering data of a nonselfadjoint Dirac operator\nwhose potential is a solution to the modified Korteweg-de Vries equation with time-dependent coefficients\nand a self-consistent source in the class of rapidly decreasing functions.\nAs a special case,\nwe examine a loaded modified Korteweg-de Vries equation with a self-consistent source.\nThe equations describe the dynamics in time of the scattering data of a nonselfadjoint Dirac operator\nwhose potential is a solution to the loaded modified Korteweg-de Vries equation with variable coefficients\nin the class of rapidly decreasing functions.\nWe provide some examples that illustrate applications of the results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624040220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Cauchy problem for the modified Korteweg-de Vries equation with time-dependent coefficients and a self-consistent source in the class of rapidly decreasing functions. To solve the problem, we find Lax pairs and employ the inverse scattering method. Note that in the case under study the Dirac operator is not selfadjoint, and so the eigenvalues can be multiples. We find the equations describing the dynamics in time of the scattering data of a nonselfadjoint Dirac operator whose potential is a solution to the modified Korteweg-de Vries equation with time-dependent coefficients and a self-consistent source in the class of rapidly decreasing functions. As a special case, we examine a loaded modified Korteweg-de Vries equation with a self-consistent source. The equations describe the dynamics in time of the scattering data of a nonselfadjoint Dirac operator whose potential is a solution to the loaded modified Korteweg-de Vries equation with variable coefficients in the class of rapidly decreasing functions. We provide some examples that illustrate applications of the results.

分享
查看原文
具有时变系数和自洽源的修正科特韦格-德-弗里斯方程积分法
我们考虑了修正的 Korteweg-de Vries 方程的 Cauchy 问题,该方程具有随时间变化的系数和快速递减函数类中的自洽源。为了解决这个问题,我们找到了 Lax 对,并采用了反向散射法。请注意,在所研究的情况中,狄拉克算子不是自洽的,因此特征值可能是倍数。我们找到了描述非自洽狄拉克算子散射数据时间动态的方程,该算子的势是修正的科特韦格-德-弗里斯方程的解,具有随时间变化的系数和快速递减函数类中的自洽源。作为一个特例,我们研究了一个具有自洽源的加载修正 Korteweg-de Vries 方程。该方程描述了一个非自洽狄拉克算子的散射数据的时间动态,该算子的势是快速递减函数类中具有可变系数的加载修正 Korteweg-de Vries 方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信