The worldsheet skein D-module and basic curves on Lagrangian fillings of the Hopf link conormal

Tobias Ekholm, Pietro Longhi, Lukas Nakamura
{"title":"The worldsheet skein D-module and basic curves on Lagrangian fillings of the Hopf link conormal","authors":"Tobias Ekholm, Pietro Longhi, Lukas Nakamura","doi":"arxiv-2407.09836","DOIUrl":null,"url":null,"abstract":"HOMFLYPT polynomials of knots in the 3-sphere in symmetric representations\nsatisfy recursion relations. Their geometric origin is holomorphic curves at\ninfinity on knot conormals that determine a $D$-module with characteristic\nvariety the Legendrian knot conormal augmention variety and with the recursion\nrelations as operator polynomial generators [arXiv:1304.5778,\narXiv:1803.04011]. We consider skein lifts of recursions and $D$-modules\ncorresponding to skein valued open curve counts [arXiv:1901.08027] that encode\nHOMFLYPT polynomials colored by arbitrary partitions. We define a worldsheet\nskein module which is the universal target for skein curve counts and a\ncorresponding $D$-module. We then consider the concrete example of the Legendrian conormal of the Hopf\nlink. We show that the worldsheet skein $D$-module for the Hopf link conormal\nis generated by three operator polynomials that annihilate the skein valued\npartition function for any choice of Lagrangian filling and recursively\ndetermine it uniquely. We find Lagrangian fillings for any point in the\naugmentation variety and show that their skein valued partition functions admit\nquiver-like expansions where all holomorphic curves are generated by a small\nnumber of basic holomorphic disks and annuli and their multiple covers.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

HOMFLYPT polynomials of knots in the 3-sphere in symmetric representations satisfy recursion relations. Their geometric origin is holomorphic curves at infinity on knot conormals that determine a $D$-module with characteristic variety the Legendrian knot conormal augmention variety and with the recursion relations as operator polynomial generators [arXiv:1304.5778, arXiv:1803.04011]. We consider skein lifts of recursions and $D$-modules corresponding to skein valued open curve counts [arXiv:1901.08027] that encode HOMFLYPT polynomials colored by arbitrary partitions. We define a worldsheet skein module which is the universal target for skein curve counts and a corresponding $D$-module. We then consider the concrete example of the Legendrian conormal of the Hopf link. We show that the worldsheet skein $D$-module for the Hopf link conormal is generated by three operator polynomials that annihilate the skein valued partition function for any choice of Lagrangian filling and recursively determine it uniquely. We find Lagrangian fillings for any point in the augmentation variety and show that their skein valued partition functions admit quiver-like expansions where all holomorphic curves are generated by a small number of basic holomorphic disks and annuli and their multiple covers.
霍普夫链接常模的拉格朗日填充上的世界表矢量 D 模块和基本曲线
对称表示中 3 球上结的 HOMFLYPT 多项式满足递推关系。它们的几何起源是结锥上无穷远处的全形曲线,它决定了一个具有 Legendrian 结锥常增量品种特性的 $D$ 模块,并以递归关系作为算子多项式生成器[arXiv:1304.5778,arXiv:1803.04011]。我们考虑了递归和 $D$ 模块的斯琴举,这些模块对应于以任意分区着色的 HOMFLYPT 多项式的斯琴值开放曲线计数 [arXiv:1901.08027]。我们定义了一个世界表单kein 模块,它是kein 曲线计数和对应 $D$ 模块的通用目标。然后,我们考虑 Hopflink 的 Legendrian conormal 这一具体例子。我们证明,霍普夫链路常模的世界表kein $D$ 模块是由三个算子多项式生成的,这三个算子多项式湮灭了任意选择的拉格朗日填充的kein valedpartition 函数,并递归地确定了它的唯一性。我们找到了增量综中任意点的拉格朗日填充,并证明它们的矢值分区函数允许类似于quiver的展开,其中所有全形曲线都是由少量基本全形盘和环及其多重覆盖生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信