An endomorphism on immersed curves in the pillowcase

Christopher M. Herald, Paul Kirk
{"title":"An endomorphism on immersed curves in the pillowcase","authors":"Christopher M. Herald, Paul Kirk","doi":"arxiv-2407.11247","DOIUrl":null,"url":null,"abstract":"We examine the holonomy-perturbed traceless SU(2) character variety of the\ntrivial four-stranded tangle {p_1,p_2,p_3,p_4} X [0,1] in S^2 X [0,1] equipped\nwith a strong marking, either an earring or a bypass. Viewing these marked\ntangles as endomorphisms in the cobordism category from the four-punctured\nsphere to itself, we identify the images of these endomorphisms in the\nWeinstein symplectic partial category under the partially defined\nholonomy-perturbed traceless character variety functor. We express these\nendomorphisms on immersed curves in the pillowcase in terms of doubling and\nfigure eight operations and prove they have the same image.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the holonomy-perturbed traceless SU(2) character variety of the trivial four-stranded tangle {p_1,p_2,p_3,p_4} X [0,1] in S^2 X [0,1] equipped with a strong marking, either an earring or a bypass. Viewing these marked tangles as endomorphisms in the cobordism category from the four-punctured sphere to itself, we identify the images of these endomorphisms in the Weinstein symplectic partial category under the partially defined holonomy-perturbed traceless character variety functor. We express these endomorphisms on immersed curves in the pillowcase in terms of doubling and figure eight operations and prove they have the same image.
枕头套中沉浸曲线的内态性
我们研究了 S^2 X [0,1] 中的三维四链纠缠 {p_1,p_2,p_3,p_4} 的全局性扰动无痕 SU(2) 特征多样性。S^2 X [0,1] 中的 X [0,1] 带有一个强标记,要么是耳环,要么是旁路。我们把这些标记的三角形看成是从四穿刺球到其本身的共线性范畴中的内同构,并在部分定义的holonomy-perturbed traceless character variety functor 下识别出这些内同构在韦恩斯坦交点偏范畴中的映像。我们用加倍运算和图八运算来表达枕套中浸没曲线上的这些内同构,并证明它们具有相同的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信