On the blow-up formula of the Chow weights for polarized toric manifolds

King Leung Lee, Naoto Yotsutani
{"title":"On the blow-up formula of the Chow weights for polarized toric manifolds","authors":"King Leung Lee, Naoto Yotsutani","doi":"arxiv-2407.10082","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth projective toric variety and let $\\widetilde{X}$ be the\nblow-up manifold of $X$ at finitely many distinct tours invariants points of\n$X$. In this paper, we give an explicit combinatorial formula of the Chow\nweight of $\\widetilde{X}$ in terms of the base toric manifold $X$ and the\nsymplectic cuts of the Delzant polytope. We then apply this blow-up formula to\nthe projective plane and see the difference of Chow stability between the toric\nblow-up manifolds and the manifolds of blow-ups at general points. Finally, we\ndetect the blow-up formula of the Futaki-Ono invariant which is an obstruction\nfor asymptotic Chow semistability of a polarized toric manifold.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $X$ be a smooth projective toric variety and let $\widetilde{X}$ be the blow-up manifold of $X$ at finitely many distinct tours invariants points of $X$. In this paper, we give an explicit combinatorial formula of the Chow weight of $\widetilde{X}$ in terms of the base toric manifold $X$ and the symplectic cuts of the Delzant polytope. We then apply this blow-up formula to the projective plane and see the difference of Chow stability between the toric blow-up manifolds and the manifolds of blow-ups at general points. Finally, we detect the blow-up formula of the Futaki-Ono invariant which is an obstruction for asymptotic Chow semistability of a polarized toric manifold.
论极化环流形的周权重吹胀公式
设 $X$ 是光滑射影环状流形,并设 $\widetilde{X}$ 是 $X$ 在有限多个不同的游不变点上的吹起流形。在本文中,我们给出了$\widetilde{X}$的周重的明确组合公式,它是以基环状流形$X$和德尔赞特多胞形的交错切点为基础的。然后,我们将这一炸裂公式应用于投影面,观察环状炸裂流形与一般点的炸裂流形之间周稳定性的差异。最后,我们发现了极化环状流形的二木-小野不变量的吹胀公式,它是极化环状流形渐近周半稳 定性的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信