Experimental Investigation of the Heat Transfer under Air or Helium-Xenon Mixture Flow into the Heated 7-Rod Bundle with Spaced Grids

IF 1.3 4区 工程技术 Q3 ENGINEERING, MECHANICAL
O. V. Vitovsky, M. S. Makarov
{"title":"Experimental Investigation of the Heat Transfer under Air or Helium-Xenon Mixture Flow into the Heated 7-Rod Bundle with Spaced Grids","authors":"O. V. Vitovsky,&nbsp;M. S. Makarov","doi":"10.1134/S1810232824020061","DOIUrl":null,"url":null,"abstract":"<p>The experimental results on heat transfer and pressure drop during the gas coolant flow into a space formed by a dense packing of 7 heated tubes are presented. To fix the tubes rigidly, 8 spacer grids, evenly distributed along the tube lengths, are used together with longitudinal displacers, which ensure a uniform gas flow field in the internal and external channels of the tube bundle. As a working fluid, gas mixtures with a large difference in the Prandtl number were used: air (Pr = 0.7) and helium-xenon mixture (Pr = 0.23). The experiments were carried out in the range of Reynolds numbers of 1926–11200. The wall temperature distributions of the central and peripheral tubes along the length are measured in detail. Particular attention is paid to the areas of gas flow restructuring near the spacer grid. The heat transfer coefficients and friction factors are determined, and the obtained correlations are compared with the known correlations for round channels. The effect of spacer grids, fixing the heated tubes, on local and average heat transfer and friction factors has been analyzed.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 2","pages":"303 - 315"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824020061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The experimental results on heat transfer and pressure drop during the gas coolant flow into a space formed by a dense packing of 7 heated tubes are presented. To fix the tubes rigidly, 8 spacer grids, evenly distributed along the tube lengths, are used together with longitudinal displacers, which ensure a uniform gas flow field in the internal and external channels of the tube bundle. As a working fluid, gas mixtures with a large difference in the Prandtl number were used: air (Pr = 0.7) and helium-xenon mixture (Pr = 0.23). The experiments were carried out in the range of Reynolds numbers of 1926–11200. The wall temperature distributions of the central and peripheral tubes along the length are measured in detail. Particular attention is paid to the areas of gas flow restructuring near the spacer grid. The heat transfer coefficients and friction factors are determined, and the obtained correlations are compared with the known correlations for round channels. The effect of spacer grids, fixing the heated tubes, on local and average heat transfer and friction factors has been analyzed.

Abstract Image

Abstract Image

空气或氦氙混合物流向带间隔栅格的加热七棒束时的传热实验研究
摘要 本文介绍了气体冷却剂流入由 7 根加热管密集排列而成的空间时的传热和压降实验结果。为了固定管子,使用了沿管子长度方向均匀分布的 8 个间隔格栅和纵向位移器,以确保管束内外通道中的气体流场均匀一致。作为工作流体,使用了普朗特尔数差异较大的混合气体:空气(Pr = 0.7)和氦氙混合物(Pr = 0.23)。实验在 1926-11200 雷诺数范围内进行。实验详细测量了中心管和外围管壁沿长度方向的温度分布。特别关注了隔栅附近的气流重组区域。确定了传热系数和摩擦系数,并将获得的相关系数与已知的圆形通道相关系数进行了比较。分析了固定加热管的间隔格栅对局部和平均传热以及摩擦因数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineering Thermophysics
Journal of Engineering Thermophysics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.30
自引率
12.50%
发文量
0
审稿时长
3 months
期刊介绍: Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信