Repurformer: Transformers for Repurposing-Aware Molecule Generation

Changhun Lee, Gyumin Lee
{"title":"Repurformer: Transformers for Repurposing-Aware Molecule Generation","authors":"Changhun Lee, Gyumin Lee","doi":"arxiv-2407.11439","DOIUrl":null,"url":null,"abstract":"Generating as diverse molecules as possible with desired properties is\ncrucial for drug discovery research, which invokes many approaches based on\ndeep generative models today. Despite recent advancements in these models,\nparticularly in variational autoencoders (VAEs), generative adversarial\nnetworks (GANs), Transformers, and diffusion models, a significant challenge\nknown as \\textit{the sample bias problem} remains. This problem occurs when\ngenerated molecules targeting the same protein tend to be structurally similar,\nreducing the diversity of generation. To address this, we propose leveraging\nmulti-hop relationships among proteins and compounds. Our model, Repurformer,\nintegrates bi-directional pretraining with Fast Fourier Transform (FFT) and\nlow-pass filtering (LPF) to capture complex interactions and generate diverse\nmolecules. A series of experiments on BindingDB dataset confirm that\nRepurformer successfully creates substitutes for anchor compounds that resemble\npositive compounds, increasing diversity between the anchor and generated\ncompounds.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generating as diverse molecules as possible with desired properties is crucial for drug discovery research, which invokes many approaches based on deep generative models today. Despite recent advancements in these models, particularly in variational autoencoders (VAEs), generative adversarial networks (GANs), Transformers, and diffusion models, a significant challenge known as \textit{the sample bias problem} remains. This problem occurs when generated molecules targeting the same protein tend to be structurally similar, reducing the diversity of generation. To address this, we propose leveraging multi-hop relationships among proteins and compounds. Our model, Repurformer, integrates bi-directional pretraining with Fast Fourier Transform (FFT) and low-pass filtering (LPF) to capture complex interactions and generate diverse molecules. A series of experiments on BindingDB dataset confirm that Repurformer successfully creates substitutes for anchor compounds that resemble positive compounds, increasing diversity between the anchor and generated compounds.
Repurformer:用于意识到再利用的分子生成的变形器
生成具有所需特性的尽可能多样化的分子对于药物发现研究至关重要,当今的药物发现研究采用了许多基于深度生成模型的方法。尽管这些模型最近取得了进步,特别是在变异自动编码器(VAE)、生成对抗网络(GAN)、变换器(Transformers)和扩散模型方面,但一个被称为textit{样本偏差问题}的重大挑战依然存在。当生成的针对相同蛋白质的分子在结构上趋于相似,从而降低了生成的多样性时,就会出现这个问题。为了解决这个问题,我们建议利用蛋白质和化合物之间的多跳关系。我们的模型Repurformer将双向预训练与快速傅立叶变换(FFT)和低通滤波(LPF)相结合,捕捉复杂的相互作用并生成多样化的分子。在 BindingDB 数据集上进行的一系列实验证实,Repurformer 成功地为锚化合物创建了与阳性化合物相似的替代物,增加了锚化合物与生成化合物之间的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信