C-pairs and their morphisms

Stefan Kebekus, Erwan Rousseau
{"title":"C-pairs and their morphisms","authors":"Stefan Kebekus, Erwan Rousseau","doi":"arxiv-2407.10668","DOIUrl":null,"url":null,"abstract":"This paper surveys Campana's theory of C-pairs (or \"geometric orbifolds\") in\nthe complex-analytic setting, to serve as a reference for future work. Written\nwith a view towards applications in hyperbolicity, rational points, and entire\ncurves, it introduces the fundamental definitions of C-pair-theory\nsystematically. In particular, it establishes an appropriate notion of\n\"morphism\", which agrees with notions from the literature in the smooth case,\nbut is better behaved in the singular setting and has functorial properties\nthat relate it to minimal model theory.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper surveys Campana's theory of C-pairs (or "geometric orbifolds") in the complex-analytic setting, to serve as a reference for future work. Written with a view towards applications in hyperbolicity, rational points, and entire curves, it introduces the fundamental definitions of C-pair-theory systematically. In particular, it establishes an appropriate notion of "morphism", which agrees with notions from the literature in the smooth case, but is better behaved in the singular setting and has functorial properties that relate it to minimal model theory.
C 对及其态式
本文概述了坎帕纳在复解析背景下的 C 对(或 "几何球面")理论,为今后的工作提供参考。本文着眼于双曲、有理点和全曲线的应用,系统地介绍了 C 对理论的基本定义。特别是,它建立了一个适当的 "态 "概念,这个概念与光滑情况下的文献中的概念一致,但在奇异情况下表现得更好,并且具有与最小模型理论相关的函数特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信