MSW-type compactifications of 6d $(1,0)$ SCFTs on 4-manifolds

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Jin Chen, Zhuo Chen, Wei Cui, Babak Haghighat
{"title":"MSW-type compactifications of 6d $(1,0)$ SCFTs on 4-manifolds","authors":"Jin Chen, Zhuo Chen, Wei Cui, Babak Haghighat","doi":"10.4310/atmp.2023.v27.n6.a5","DOIUrl":null,"url":null,"abstract":"$\\def\\d{\\mathrm{d}}$ In this work, we study compactifications of $6\\d$ $(1, 0)$ SCFTs, in particular those of conformal matter type, on Kähler 4-manifolds. We show how this can be realized via wrapping M5 branes on $4$-cycles of non-compact Calabi–Yau fourfolds with ADE singularity in the fiber. Such compactifications lead to domain walls in $3\\d$ $\\mathcal{N} = 2$ theories which flow to $2\\d N = (0, 2)$ SCFTs. We compute the central charges of such $2\\d$ CFTs via $6\\d$ anomaly polynomials by employing a particular topological twist along the $4$-manifold. Moreover, we study compactifications on non-compact $4$-manifolds leading to coupled $3\\d$-$2\\d$ systems. We show how these can be glued together consistently to reproduce the central charge and anomaly polynomial obtained in the compact case. Lastly, we study concrete CFT proposals for some special cases.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2023.v27.n6.a5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\d{\mathrm{d}}$ In this work, we study compactifications of $6\d$ $(1, 0)$ SCFTs, in particular those of conformal matter type, on Kähler 4-manifolds. We show how this can be realized via wrapping M5 branes on $4$-cycles of non-compact Calabi–Yau fourfolds with ADE singularity in the fiber. Such compactifications lead to domain walls in $3\d$ $\mathcal{N} = 2$ theories which flow to $2\d N = (0, 2)$ SCFTs. We compute the central charges of such $2\d$ CFTs via $6\d$ anomaly polynomials by employing a particular topological twist along the $4$-manifold. Moreover, we study compactifications on non-compact $4$-manifolds leading to coupled $3\d$-$2\d$ systems. We show how these can be glued together consistently to reproduce the central charge and anomaly polynomial obtained in the compact case. Lastly, we study concrete CFT proposals for some special cases.
4-manifolds 上 6d $(1,0)$ SCFT 的 MSW 型压实
$def\d\{mathrm{d}}$ 在这项工作中,我们研究了 $6\d$ $(1, 0)$ SCFTs 的紧凑性,特别是那些共形物质类型的 SCFTs 在 Kähler 4-manifolds 上的紧凑性。我们展示了如何通过将 M5 支链包裹在纤维中具有 ADE 奇异性的非紧凑 Calabi-Yau 四维的 $4$ 循环上来实现这一点。这种致密化导致了$3\d$ $mathcal{N} = 2$理论中的域墙,它流向$2\d N = (0, 2)$ SCFTs。我们通过沿$4$-manifold的特殊拓扑扭转,通过$6\d$反常多项式计算这种$2\d$ CFT的中心电荷。此外,我们还研究了非紧密$4$-manifolds上的紧凑性,这导致了耦合的$3\d$-$2\d$系统。我们展示了如何把这些系统连贯地粘合在一起,以重现紧凑情况下获得的中心电荷和异常多项式。最后,我们研究了一些特殊情况下的具体 CFT 方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信