Saddle solutions for the planar Schrödinger–Poisson system with exponential growth

Liying Shan, Wei Shuai
{"title":"Saddle solutions for the planar Schrödinger–Poisson system with exponential growth","authors":"Liying Shan, Wei Shuai","doi":"10.1007/s00030-024-00980-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are interested in the following planar Schrödinger–Poisson system </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u+a(x)u+2\\pi \\phi u=|u|^{p-2}ue^{\\alpha _0|u|^\\gamma }, \\ {} &amp;{} x\\in {\\mathbb {R}}^2,\\\\ \\Delta \\phi =u^2,\\ {} &amp;{} x\\in {\\mathbb {R}}^2, \\end{array} \\right. \\end{aligned}$$</span>(0.1)<p>where <span>\\(p&gt;2\\)</span>, <span>\\(\\alpha _0&gt;0\\)</span> and <span>\\(0&lt;\\gamma \\le 2\\)</span>, the potential <span>\\(a:{\\mathbb {R}}^2\\rightarrow {\\mathbb {R}}\\)</span> is invariant under the action of a closed subgroup of the orthogonal transformation group <i>O</i>(2). As a consequence, we obtain infinitely many saddle type nodal solutions for equation (0.1) with their nodal domains meeting at the origin if <span>\\(0&lt;\\gamma &lt;2\\)</span> and <span>\\(p&gt;2\\)</span>. Furthermore, in the critical case <span>\\(\\gamma =2\\)</span> and <span>\\(p&gt;4\\)</span>, we prove that equation (0.1) possesses a positive solution which is invariant under the same group action.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00980-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are interested in the following planar Schrödinger–Poisson system

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+a(x)u+2\pi \phi u=|u|^{p-2}ue^{\alpha _0|u|^\gamma }, \ {} &{} x\in {\mathbb {R}}^2,\\ \Delta \phi =u^2,\ {} &{} x\in {\mathbb {R}}^2, \end{array} \right. \end{aligned}$$(0.1)

where \(p>2\), \(\alpha _0>0\) and \(0<\gamma \le 2\), the potential \(a:{\mathbb {R}}^2\rightarrow {\mathbb {R}}\) is invariant under the action of a closed subgroup of the orthogonal transformation group O(2). As a consequence, we obtain infinitely many saddle type nodal solutions for equation (0.1) with their nodal domains meeting at the origin if \(0<\gamma <2\) and \(p>2\). Furthermore, in the critical case \(\gamma =2\) and \(p>4\), we prove that equation (0.1) possesses a positive solution which is invariant under the same group action.

具有指数增长的平面薛定谔-泊松系统的鞍解法
在本文中,我们对以下平面薛定谔-泊松系统感兴趣 $$\begin{aligned}\left\{ \begin{array}{ll} -\Delta u+a(x)u+2\pi \phi u=|u|^{p-2}ue^\{alpha _0|u|^\gamma }, \ {} &{} x\in {\mathbb {R}}^2,\\ \Delta \phi =u^2,\ {} &{} x\in {\mathbb {R}}^2, \end{array}.\right.\end{aligned}$(0.1)where \(p>2\), \(\alpha _0>0\) and \(0<\gamma \le 2\), the potential \(a:{mathbb {R}}^2\rightarrow {mathbb {R}}\) is invariant under the action of a closed subgroup of the orthogonal transformation group O(2).因此,如果 \(0<\gamma <2\) 和 \(p>2\) ,我们可以得到方程 (0.1) 的无限多个鞍型节点解,它们的节点域在原点相交。此外,在临界情况下((gamma =2)和(p>4)),我们证明方程(0.1)有一个正解,它在相同的群作用下是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信