A Primitive Model for Predicting Membrane Currents in Excitable Cells Based Only on Ion Diffusion Coefficients

Vivaan Patel, Joshua D. Priosoetanto, Aashutosh Mistry, John Newman, Nitash P. Balsara
{"title":"A Primitive Model for Predicting Membrane Currents in Excitable Cells Based Only on Ion Diffusion Coefficients","authors":"Vivaan Patel, Joshua D. Priosoetanto, Aashutosh Mistry, John Newman, Nitash P. Balsara","doi":"arxiv-2407.09474","DOIUrl":null,"url":null,"abstract":"Classical models for predicting current flow in excitable cells such as\naxons, originally proposed by Hodgkin and Huxley, rely on empirical\nvoltage-gating parameters that quantify ion transport across sodium and\npotassium ion channels. We propose a primitive model for predicting these\ncurrents based entirely on well-established ion diffusion coefficients. Changes\ninside the excitable cell due to the opening of a central sodium channel are\nconfined to a growing hemisphere with a radius that is governed by the sodium\nion diffusion coefficient. The sodium channel, which is open throughout the\ncalculation, activates and deactivates naturally due to coupled\nelectrodiffusion processes. The characteristic time of current pulses, which\nare in the picoampere range, increases from 10$^{-5}$ to 10$^{-1}$ s as channel\ndensity is decreased from 10,000 to 1 channel per micrometer squared. Model\npredictions are compared with data obtained from giant squid axons without\ninvoking any gating parameters.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classical models for predicting current flow in excitable cells such as axons, originally proposed by Hodgkin and Huxley, rely on empirical voltage-gating parameters that quantify ion transport across sodium and potassium ion channels. We propose a primitive model for predicting these currents based entirely on well-established ion diffusion coefficients. Changes inside the excitable cell due to the opening of a central sodium channel are confined to a growing hemisphere with a radius that is governed by the sodium ion diffusion coefficient. The sodium channel, which is open throughout the calculation, activates and deactivates naturally due to coupled electrodiffusion processes. The characteristic time of current pulses, which are in the picoampere range, increases from 10$^{-5}$ to 10$^{-1}$ s as channel density is decreased from 10,000 to 1 channel per micrometer squared. Model predictions are compared with data obtained from giant squid axons without invoking any gating parameters.
仅根据离子扩散系数预测可兴奋细胞膜电流的原始模型
最初由霍奇金和赫胥黎提出的用于预测诸如轴突等可兴奋细胞中电流流动的经典模型,依赖于量化钠离子和钾离子通道中离子传输的经验电压-门控参数。我们提出了一个完全基于成熟的离子扩散系数来预测这些电流的原始模型。由于中心钠离子通道的开放,可兴奋细胞内的变化被限制在一个半径不断扩大的半球内,其半径由钠离子扩散系数决定。钠通道在整个计算过程中处于开放状态,由于耦合电扩散过程而自然激活和失活。当通道密度从每平方微米 10,000 个通道降低到 1 个通道时,电流脉冲的特征时间从 10$^{-5}$ 秒增加到 10$^{-1}$ 秒,其范围为皮安培。将模型预测结果与从巨鱿轴突获得的数据进行了比较,后者没有调用任何门控参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信