FEBio FINESSE: An open-source finite element simulation approach to estimate in vivo heart valve strains using shape enforcement

Devin W. Laurence, Patricia M. Sabin, Analise M. Sulentic, Matthew Daemer, Steve A. Maas, Jeffrey A. Weiss, Matthew A. Jolley
{"title":"FEBio FINESSE: An open-source finite element simulation approach to estimate in vivo heart valve strains using shape enforcement","authors":"Devin W. Laurence, Patricia M. Sabin, Analise M. Sulentic, Matthew Daemer, Steve A. Maas, Jeffrey A. Weiss, Matthew A. Jolley","doi":"arxiv-2407.09629","DOIUrl":null,"url":null,"abstract":"Finite element simulations are an enticing tool to evaluate heart valve\nfunction in healthy and diseased patients; however, patient-specific\nsimulations derived from 3D echocardiography are hampered by several technical\nchallenges. In this work, we present an open-source method to enforce matching\nbetween finite element simulations and in vivo image-derived heart valve\ngeometry in the absence of patient-specific material properties, leaflet\nthickness, and chordae tendineae structures. We evaluate FEBio Finite Element\nSimulations with Shape Enforcement (FINESSE) using three synthetic test cases\ncovering a wide range of model complexity. Our results suggest that FINESSE can\nbe used to not only enforce finite element simulations to match an\nimage-derived surface, but to also estimate the first principal leaflet strains\nwithin +/- 0.03 strain. Key FINESSE considerations include: (i) appropriately\ndefining the user-defined penalty, (ii) omitting the leaflet commissures to\nimprove simulation convergence, and (iii) emulating the chordae tendineae\nbehavior via prescribed leaflet free edge motion or a chordae emulating force.\nWe then use FINESSE to estimate the in vivo valve behavior and leaflet strains\nfor three pediatric patients. In all three cases, FINESSE successfully matched\nthe target surface with median errors similar to or less than the smallest\nvoxel dimension. Further analysis revealed valve-specific findings, such as the\ntricuspid valve leaflet strains of a 2-day old patient with HLHS being larger\nthan those of two 13-year old patients. The development of this open source\npipeline will enable future studies to begin linking in vivo leaflet mechanics\nwith patient outcomes","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.09629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finite element simulations are an enticing tool to evaluate heart valve function in healthy and diseased patients; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. In this work, we present an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures. We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases covering a wide range of model complexity. Our results suggest that FINESSE can be used to not only enforce finite element simulations to match an image-derived surface, but to also estimate the first principal leaflet strains within +/- 0.03 strain. Key FINESSE considerations include: (i) appropriately defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. We then use FINESSE to estimate the in vivo valve behavior and leaflet strains for three pediatric patients. In all three cases, FINESSE successfully matched the target surface with median errors similar to or less than the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients. The development of this open source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes
FEBio FINESSE:利用形状强制法估算体内心脏瓣膜应变的开源有限元模拟方法
有限元模拟是评估健康和患病患者心脏瓣膜功能的诱人工具;然而,从三维超声心动图中得出的患者特异性模拟受到一些技术挑战的阻碍。在这项工作中,我们提出了一种开源方法,在缺乏患者特异性材料特性、瓣叶厚度和腱索结构的情况下,强制实现有限元模拟与活体图像衍生的心脏瓣膜测量之间的匹配。我们使用三个涵盖各种模型复杂度的合成测试案例对具有形状执行功能的 FEBio 有限元模拟(FINESSE)进行了评估。我们的结果表明,FINESSE 不仅能强制有限元模拟与动画衍生表面相匹配,还能估算出应变在 +/- 0.03 范围内的第一主叶应变。FINESSE 的主要考虑因素包括(我们随后使用 FINESSE 估算了三名儿科患者的体内瓣膜行为和瓣叶应变。在所有三个病例中,FINESSE 都成功匹配了目标表面,中位误差与最小体素尺寸相似或更小。进一步的分析发现了瓣膜的特异性,例如一名 2 天大的 HLHS 患者的三尖瓣瓣叶应变大于两名 13 岁患者的瓣叶应变。这一开源管道的开发将使未来的研究能够开始将体内瓣叶力学与患者预后联系起来
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信