Robust Electrothermal Switching of Optical Phase‐Change Materials through Computer‐Aided Adaptive Pulse Optimization

IF 2.5 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Parth Garud, Kiumars Aryana, Cosmin Constantin Popescu, Steven Vitale, Rashi Sharma, Kathleen A. Richardson, Tian Gu, Juejun Hu, Hyun Jung Kim
{"title":"Robust Electrothermal Switching of Optical Phase‐Change Materials through Computer‐Aided Adaptive Pulse Optimization","authors":"Parth Garud, Kiumars Aryana, Cosmin Constantin Popescu, Steven Vitale, Rashi Sharma, Kathleen A. Richardson, Tian Gu, Juejun Hu, Hyun Jung Kim","doi":"10.1002/pssr.202400177","DOIUrl":null,"url":null,"abstract":"Electrically tunable optical devices present diverse functionalities for manipulating electromagnetic waves by leveraging elements capable of reversibly switching between different optical states. This adaptability in adjusting their responses to electromagnetic waves after fabrication is crucial for developing more efficient and compact optical systems for a broad range of applications, including sensing, imaging, telecommunications, and data storage. Chalcogenide‐based phase‐change materials (PCMs) have shown great promise due to their stable, nonvolatile phase transition between amorphous and crystalline states. Nonetheless, optimizing the switching parameters of PCM devices and maintaining their stable operation over thousands of cycles with minimal variation can be challenging. Herein, the critical role of PCM pattern as well as electrical pulse form in achieving reliable and stable switching is reported on, extending the operational lifetime of the device beyond 13000 switching events. To achieve this, a computer‐aided algorithm that monitors optical changes in the device and adjusts the applied voltage in accordance with the phase transformation process is developed, thereby significantly enhancing the lifetime of these reconfigurable devices. The findings reveal that patterned PCM structures show significantly higher endurance compared to blanket PCM thin films.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"75 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400177","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrically tunable optical devices present diverse functionalities for manipulating electromagnetic waves by leveraging elements capable of reversibly switching between different optical states. This adaptability in adjusting their responses to electromagnetic waves after fabrication is crucial for developing more efficient and compact optical systems for a broad range of applications, including sensing, imaging, telecommunications, and data storage. Chalcogenide‐based phase‐change materials (PCMs) have shown great promise due to their stable, nonvolatile phase transition between amorphous and crystalline states. Nonetheless, optimizing the switching parameters of PCM devices and maintaining their stable operation over thousands of cycles with minimal variation can be challenging. Herein, the critical role of PCM pattern as well as electrical pulse form in achieving reliable and stable switching is reported on, extending the operational lifetime of the device beyond 13000 switching events. To achieve this, a computer‐aided algorithm that monitors optical changes in the device and adjusts the applied voltage in accordance with the phase transformation process is developed, thereby significantly enhancing the lifetime of these reconfigurable devices. The findings reveal that patterned PCM structures show significantly higher endurance compared to blanket PCM thin films.
通过计算机辅助自适应脉冲优化实现光相变材料的稳健电热转换
电可调光学器件利用能够在不同光学状态之间可逆切换的元件,为操纵电磁波提供了多种功能。这种在制造后调整其对电磁波响应的适应性,对于开发更高效、更紧凑的光学系统,包括传感、成像、电信和数据存储等广泛应用至关重要。基于卤化镓的相变材料(PCM)在非晶态和结晶态之间的相变稳定、不易挥发,因此前景广阔。然而,要优化 PCM 器件的开关参数并使其在数千次循环中保持稳定运行且变化极小,是一项具有挑战性的工作。本文报告了 PCM 模式和电脉冲形式在实现可靠、稳定开关中的关键作用,从而将器件的工作寿命延长到 13000 次以上。为实现这一目标,我们开发了一种计算机辅助算法,该算法可监测器件中的光学变化,并根据相变过程调整施加的电压,从而显著提高这些可重构器件的使用寿命。研究结果表明,与空白 PCM 薄膜相比,图案化 PCM 结构的耐用性明显更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica Status Solidi-Rapid Research Letters
Physica Status Solidi-Rapid Research Letters 物理-材料科学:综合
CiteScore
5.20
自引率
3.60%
发文量
208
审稿时长
1.4 months
期刊介绍: Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers. The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信