Scalable Networking of Neutral-Atom Qubits: Nanofiber-Based Approach for Multiprocessor Fault-Tolerant Quantum Computer

Shinichi Sunami, Shiro Tamiya, Ryotaro Inoue, Hayata Yamasaki, Akihisa Goban
{"title":"Scalable Networking of Neutral-Atom Qubits: Nanofiber-Based Approach for Multiprocessor Fault-Tolerant Quantum Computer","authors":"Shinichi Sunami, Shiro Tamiya, Ryotaro Inoue, Hayata Yamasaki, Akihisa Goban","doi":"arxiv-2407.11111","DOIUrl":null,"url":null,"abstract":"Neutral atoms are among the leading platforms toward realizing fault-tolerant\nquantum computation (FTQC). However, scaling up a single neutral-atom device\nbeyond $\\sim 10^4$ atoms to meet the demands of FTQC for practical applications\nremains a challenge. To overcome this challenge, we clarify the criteria and\ntechnological requirements for further scaling based on multiple neutral atom\nquantum processing units (QPUs) connected through photonic networking links.\nOur quantitative analysis shows that nanofiber optical cavities have the\npotential as an efficient atom-photon interface to enable fast entanglement\ngeneration between atoms in distinct neutral-atom modules, allowing multiple\nneutral-atom QPUs to operate cooperatively without sacrificing computational\nspeed. Using state-of-the-art millimeter-scale nanofiber cavities with the\nfinesse of thousands, over a hundred atoms can be coupled to the cavity mode\nwith an optical tweezer array, with expected single-atom cooperativity\nexceeding 100 for telecom-band transition of ytterbium atoms. This enables\nefficient time-multiplexed entanglement generation with a predicted Bell pair\ngeneration rate of 100 kHz while maintaining a small footprint for channel\nmultiplexing. These proposals and results indicate a promising pathway for\nbuilding large-scale multiprocessor fault-tolerant quantum computers using\nneutral atoms, nanofiber optical cavities, and fiber-optic networks.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neutral atoms are among the leading platforms toward realizing fault-tolerant quantum computation (FTQC). However, scaling up a single neutral-atom device beyond $\sim 10^4$ atoms to meet the demands of FTQC for practical applications remains a challenge. To overcome this challenge, we clarify the criteria and technological requirements for further scaling based on multiple neutral atom quantum processing units (QPUs) connected through photonic networking links. Our quantitative analysis shows that nanofiber optical cavities have the potential as an efficient atom-photon interface to enable fast entanglement generation between atoms in distinct neutral-atom modules, allowing multiple neutral-atom QPUs to operate cooperatively without sacrificing computational speed. Using state-of-the-art millimeter-scale nanofiber cavities with the finesse of thousands, over a hundred atoms can be coupled to the cavity mode with an optical tweezer array, with expected single-atom cooperativity exceeding 100 for telecom-band transition of ytterbium atoms. This enables efficient time-multiplexed entanglement generation with a predicted Bell pair generation rate of 100 kHz while maintaining a small footprint for channel multiplexing. These proposals and results indicate a promising pathway for building large-scale multiprocessor fault-tolerant quantum computers using neutral atoms, nanofiber optical cavities, and fiber-optic networks.
中性原子量子位的可扩展网络:基于纳米纤维的多处理器容错量子计算机方法
中性原子是实现容错量子计算(FTQC)的主要平台之一。然而,要将单个中性原子设备扩展到超过10^4美元原子,以满足实际应用中的FTQC需求,仍然是一个挑战。我们的定量分析表明,纳米纤维光腔具有作为高效原子光子接口的潜力,可实现不同中性原子模块中原子之间的快速纠缠,从而允许多个中性原子 QPU 在不牺牲计算速度的情况下协同运行。利用最先进的毫米级纳米纤维空腔,可通过光学镊子阵列将一百多个原子耦合到空腔模式中,预计镱原子电信波段转换的单原子合作度将超过 100。这就实现了高效的时间多路复用纠缠生成,预计贝尔配对生成率为 100 kHz,同时还能保持较小的通道多路复用占用空间。这些建议和结果表明,利用中性原子、纳米纤维光腔和光纤网络构建大规模多处理器容错量子计算机是一条大有可为的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信