{"title":"On the Liouville function at polynomial arguments","authors":"Joni Teräväinen","doi":"10.1353/ajm.2024.a932436","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>Let $\\lambda$ denote the Liouville function. A problem posed by Chowla and by Cassaigne--Ferenczi--Mauduit--Rivat--S\\'ark\\\"ozy asks to show that if $P(x)\\in\\mathbb{Z}[x]$, then the sequence $\\lambda(P(n))$ changes sign infinitely often, assuming only that $P(x)$ is not the square of another polynomial.</p><p>We show that the sequence $\\lambda(P(n))$ indeed changes sign infinitely often, provided that either (i) $P$ factorizes into linear factors over the rationals; or (ii) $P$ is a reducible cubic polynomial; or (iii) $P$ factorizes into a product of any number of quadratics of a certain type; or (iv) $P$ is any polynomial not belonging to an exceptional set of density zero.</p><p>Concerning (i), we prove more generally that the partial sums of $g(P(n))$ for $g$ a bounded multiplicative function exhibit nontrivial cancellation under necessary and sufficient conditions on $g$. This establishes a ``99\\% version'' of Elliott's conjecture for multiplicative functions taking values in the roots of unity of some order. Part (iv) also generalizes to the setting of $g(P(n))$ and provides a multiplicative function analogue of a recent result of Skorobogatov and Sofos on almost all polynomials attaining a prime value.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"25 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a932436","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
abstract:
Let $\lambda$ denote the Liouville function. A problem posed by Chowla and by Cassaigne--Ferenczi--Mauduit--Rivat--S\'ark\"ozy asks to show that if $P(x)\in\mathbb{Z}[x]$, then the sequence $\lambda(P(n))$ changes sign infinitely often, assuming only that $P(x)$ is not the square of another polynomial.
We show that the sequence $\lambda(P(n))$ indeed changes sign infinitely often, provided that either (i) $P$ factorizes into linear factors over the rationals; or (ii) $P$ is a reducible cubic polynomial; or (iii) $P$ factorizes into a product of any number of quadratics of a certain type; or (iv) $P$ is any polynomial not belonging to an exceptional set of density zero.
Concerning (i), we prove more generally that the partial sums of $g(P(n))$ for $g$ a bounded multiplicative function exhibit nontrivial cancellation under necessary and sufficient conditions on $g$. This establishes a ``99\% version'' of Elliott's conjecture for multiplicative functions taking values in the roots of unity of some order. Part (iv) also generalizes to the setting of $g(P(n))$ and provides a multiplicative function analogue of a recent result of Skorobogatov and Sofos on almost all polynomials attaining a prime value.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.