Planar minimal surfaces with polynomial growth in the Sp(4,ℝ)-symmetric space

IF 1.7 1区 数学 Q1 MATHEMATICS
Andrea Tamburelli, Michael Wolf
{"title":"Planar minimal surfaces with polynomial growth in the Sp(4,ℝ)-symmetric space","authors":"Andrea Tamburelli, Michael Wolf","doi":"10.1353/ajm.2024.a932432","DOIUrl":null,"url":null,"abstract":"<p><p>abstract:</p><p>We study the asymptotic geometry of a family of conformally planar minimal surfaces with polynomial growth in the $\\Sp(4,\\R)$-symmetric space. We describe a homeomorphism between the \"Hitchin component\" of wild $\\Sp(4,\\R)$-Higgs bundles over $\\CP^1$ with a single pole at infinity and a component of maximal surfaces with light-like polygonal boundary in $\\h^{2,2}$. Moreover, we identify those surfaces with convex embeddings into the Grassmannian of symplectic planes of $\\R^4$. We show, in addition, that our planar maximal surfaces are the local limits of equivariant maximal surfaces in $\\h^{2,2}$ associated to $\\Sp(4,\\R)$-Hitchin representations along rays of holomorphic quartic differentials.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2024.a932432","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:

We study the asymptotic geometry of a family of conformally planar minimal surfaces with polynomial growth in the $\Sp(4,\R)$-symmetric space. We describe a homeomorphism between the "Hitchin component" of wild $\Sp(4,\R)$-Higgs bundles over $\CP^1$ with a single pole at infinity and a component of maximal surfaces with light-like polygonal boundary in $\h^{2,2}$. Moreover, we identify those surfaces with convex embeddings into the Grassmannian of symplectic planes of $\R^4$. We show, in addition, that our planar maximal surfaces are the local limits of equivariant maximal surfaces in $\h^{2,2}$ associated to $\Sp(4,\R)$-Hitchin representations along rays of holomorphic quartic differentials.

Sp(4,ℝ)- 对称空间中多项式增长的平面极小曲面
摘要:我们研究了在$\Sp(4,\R)$对称空间中具有多项式增长的共形平面极小曲面族的渐近几何。我们描述了$\Sp(4,\R)$-Higgs束的 "Hitchin分量"(在$\CP^1$上有一个无穷大单极)与在$\h^{2,2}$中具有类光多边形边界的最大曲面分量之间的同构关系。此外,我们将这些曲面与凸嵌入到 $\R^4$ 的交映平面的格拉斯曼中进行了识别。此外,我们还证明了我们的平面最大曲面是 $\h^{2,2}$ 中等变最大曲面的局部极限,这些等变最大曲面与沿着全形四微分射线的 $\Sp(4,\R)$-Hitchin 表示相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信