The integrable hierarchy and the nonlinear Riemann-Hilbert problem associated with one typical Einstein-Weyl physico-geometric dispersionless system

Ge Yi, Tangna Lv, Kelei Tian, Ying Xu
{"title":"The integrable hierarchy and the nonlinear Riemann-Hilbert problem associated with one typical Einstein-Weyl physico-geometric dispersionless system","authors":"Ge Yi, Tangna Lv, Kelei Tian, Ying Xu","doi":"arxiv-2407.11515","DOIUrl":null,"url":null,"abstract":"From a specific series of exchange conditions for a one-parameter Hamiltonian\nvector field, we establish an integrable hierarchy using Lax pairs derived from\nthe dispersionless partial differential equation. An exterior differential form\nof the integrable hierarchy is introduced, further confirming the existence of\nthe tau function. Subsequently, we present the twistor structure of the\nhierarchy. By constructing the nonlinear Riemann Hilbert problem for the\nequation, the structure of the solution to the equation is better understood.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

From a specific series of exchange conditions for a one-parameter Hamiltonian vector field, we establish an integrable hierarchy using Lax pairs derived from the dispersionless partial differential equation. An exterior differential form of the integrable hierarchy is introduced, further confirming the existence of the tau function. Subsequently, we present the twistor structure of the hierarchy. By constructing the nonlinear Riemann Hilbert problem for the equation, the structure of the solution to the equation is better understood.
与一个典型的爱因斯坦-韦尔物理几何无分散系统相关的可积分层次结构和非线性黎曼-希尔伯特问题
从一参数哈密顿矢量场的一系列特定交换条件出发,我们利用从无分散偏微分方程导出的拉克斯对建立了可积分层次结构。我们引入了可积分层次结构的外微分形式,进一步证实了 tau 函数的存在。随后,我们介绍了该层次结构的扭曲结构。通过构建方程的非线性黎曼希尔伯特问题,我们更好地理解了方程解的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信