{"title":"Phase induced localization transition","authors":"Tong Liu, Xingbo Wei, Youguo Wang","doi":"arxiv-2407.10043","DOIUrl":null,"url":null,"abstract":"Localization phenomenon is an important research field in condensed matter\nphysics. However, due to the complexity and subtlety of disordered syestems,\nnew localization phenomena always emerge unexpectedly. For example, it is\ngenerally believed that the phase of the hopping term does not affect the\nlocalization properties of the system, so the calculation of the phase is often\nignored in the study of localization. Here, we introduce a quasiperiodic model\nand demonstrate that the phase change of the hopping term can significantly\nalter the localization properties of the system through detailed numerical\nsimulations such as the inverse participation ratio and multifractal analysis.\nThis phase-induced localization transition provides valuable information for\nthe study of localization physics.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.10043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Localization phenomenon is an important research field in condensed matter
physics. However, due to the complexity and subtlety of disordered syestems,
new localization phenomena always emerge unexpectedly. For example, it is
generally believed that the phase of the hopping term does not affect the
localization properties of the system, so the calculation of the phase is often
ignored in the study of localization. Here, we introduce a quasiperiodic model
and demonstrate that the phase change of the hopping term can significantly
alter the localization properties of the system through detailed numerical
simulations such as the inverse participation ratio and multifractal analysis.
This phase-induced localization transition provides valuable information for
the study of localization physics.