Nonlinear stability of non-rotating gaseous stars

IF 1.3 2区 数学 Q1 MATHEMATICS
Zhiwu Lin, Yucong Wang, Hao Zhu
{"title":"Nonlinear stability of non-rotating gaseous stars","authors":"Zhiwu Lin, Yucong Wang, Hao Zhu","doi":"10.1007/s00208-024-02940-7","DOIUrl":null,"url":null,"abstract":"<p>For the non-rotating gaseous stars modeled by the compressible Euler–Poisson system with general pressure law, Lin and Zeng (Comm Pure Appl Math 75: 2511–2572, 2022) proved a turning point principle, which gives the sharp linear stability/instability criteria for the non-rotating gaseous stars. In this paper, we prove that the sharp linear stability criterion for the non-rotating stars also implies nonlinear orbital stability against general perturbations provided the global weak solutions exist. If the perturbations are further restricted to be spherically symmetric, then nonlinear stability holds true unconditionally in the sense that the existence of global weak solutions near the non-rotating star can be proved.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"3 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02940-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the non-rotating gaseous stars modeled by the compressible Euler–Poisson system with general pressure law, Lin and Zeng (Comm Pure Appl Math 75: 2511–2572, 2022) proved a turning point principle, which gives the sharp linear stability/instability criteria for the non-rotating gaseous stars. In this paper, we prove that the sharp linear stability criterion for the non-rotating stars also implies nonlinear orbital stability against general perturbations provided the global weak solutions exist. If the perturbations are further restricted to be spherically symmetric, then nonlinear stability holds true unconditionally in the sense that the existence of global weak solutions near the non-rotating star can be proved.

非旋转气态恒星的非线性稳定性
对于以具有一般压力定律的可压缩欧拉-泊松系统为模型的非旋转气态星,Lin 和 Zeng(Comm Pure Appl Math 75: 2511-2572, 2022)证明了一个转折点原理,该原理给出了非旋转气态星的尖锐线性稳定性/不稳定性准则。在本文中,我们证明了只要存在全局弱解,非旋转恒星的尖锐线性稳定性准则也意味着非线性轨道对一般扰动的稳定性。如果扰动进一步限制为球面对称,那么非线性稳定性无条件成立,即可以证明非旋转恒星附近存在全局弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信